2024
Catalyst–Substrate Pairings for Carbocyclic and Heterocyclic Systems in Atroposelective Quinazolinone Synthesis
Guo M, Miller S. Catalyst–Substrate Pairings for Carbocyclic and Heterocyclic Systems in Atroposelective Quinazolinone Synthesis. ACS Catalysis 2024, 17226-17232. DOI: 10.1021/acscatal.4c05014.Peer-Reviewed Original ResearchChiral phosphoric acidPositive nonlinear effectNon-covalent interactionsQuinazolinone synthesisHeterocyclic systemsCatalyst scaffoldHigh enantioselectivityNitrogen heteroatomsEnantiomeric ratioCatalystReaction developmentCatalytic scaffoldMechanistic studiesEnantioselectivityPhosphoric acidSubstrateCarbocyclesCyclocondensationHeterocyclesHeteroatomsScaffoldsReactionSynthesisReactivityYieldEnantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation
Haas B, Lim N, Jermaks J, Gaster E, Guo M, Malig T, Werth J, Zhang H, Toste F, Gosselin F, Miller S, Sigman M. Enantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation. Journal Of The American Chemical Society 2024, 146: 8536-8546. PMID: 38480482, PMCID: PMC10990064, DOI: 10.1021/jacs.4c00374.Peer-Reviewed Original ResearchConceptsDensity functional theoryStructure-activity relationshipBis-acylationExcellent yieldsAsymmetric acylationTetrahedral intermediateSynthetic chemistryFunctional theoryMechanistic investigationsReaction kineticsMechanistic studiesSulfonimidamidesDesymmetrizationEnantioselectivityStructural studiesCatalystAcylPharmacophoreCinchonaIntermediateReactionChemistryKineticsYield
2023
Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-Carbonylation of Sulfonimidamides
van Dijk L, Haas B, Lim N, Clagg K, Dotson J, Treacy S, Piechowicz K, Roytman V, Zhang H, Toste F, Miller S, Gosselin F, Sigman M. Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-Carbonylation of Sulfonimidamides. Journal Of The American Chemical Society 2023, 145: 20959-20967. PMID: 37656964, DOI: 10.1021/jacs.3c06674.Peer-Reviewed Original ResearchCross-coupling methodsHeteroaryl iodidesLigand descriptorsExcellent yieldsCoupling partnersChemical spaceMedicinal chemistrySulfonimidamidesAgrochemical discoveryVirtual libraryReaction optimizationOptimal conditionsEfficient strategyHeteroarylScience techniquesEnantioselectivityArylCatalystIodideReactionChemistryData science techniquesYieldDescriptorsDiverse set
2018
Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective Cyclodehydration
Kwon Y, Chinn AJ, Kim B, Miller SJ. Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective C−N Bond‐Forming Cross‐Coupling and Catalyst‐Controlled Atroposelective Cyclodehydration. Angewandte Chemie International Edition 2018, 57: 6251-6255. PMID: 29637680, PMCID: PMC5964046, DOI: 10.1002/anie.201802963.Peer-Reviewed Original ResearchConceptsAxis of chiralityCopper complexesChiral phosphoric acid catalystChiral copper complexesPhosphoric acid catalystStereogenic carbon centersMultiple stereoisomersCatalytic approachCatalytic reactionStereogenic elementsAcid catalystRemote desymmetrizationCatalyst controlAxial chiralityCarbon centerStereogenic centersCross couplingHigh diastereoselectivityPhosphoric acidCatalystChiralityStereoisomersCyclodehydrationStereogenicityReaction
2017
Enantioselective Intermolecular C–O Bond Formation in the Desymmetrization of Diarylmethines Employing a Guanidinylated Peptide-Based Catalyst
Chinn AJ, Kim B, Kwon Y, Miller SJ. Enantioselective Intermolecular C–O Bond Formation in the Desymmetrization of Diarylmethines Employing a Guanidinylated Peptide-Based Catalyst. Journal Of The American Chemical Society 2017, 139: 18107-18114. PMID: 29116792, PMCID: PMC5738244, DOI: 10.1021/jacs.7b11197.Peer-Reviewed Original ResearchConceptsComplex molecular settingsO bond formationPeptide-based ligandsCross-coupling reactionsPhenolic hydroxyl groupsIntermolecular CuIntermolecular CChemoselective reactionTBu groupBond formationAppreciable selectivityReactive sitesPhenolic nucleophilesHydroxyl groupsSteric perturbationsMaximum enantioselectivitySecond reactive siteMolecular settingNucleophilesDesymmetrizationUncommon levelReactionSubstrateCatalystChemistryPursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis
Toste FD, Sigman MS, Miller SJ. Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Accounts Of Chemical Research 2017, 50: 609-615. PMID: 28945415, PMCID: PMC5643260, DOI: 10.1021/acs.accounts.6b00613.Peer-Reviewed Original Research
2016
Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation
Abascal NC, Miller SJ. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation. Organic Letters 2016, 18: 4646-4649. PMID: 27588823, PMCID: PMC5130343, DOI: 10.1021/acs.orglett.6b02282.Peer-Reviewed Original ResearchConceptsBaeyer-Villiger oxidationPeptide-based catalystsStereoselective Baeyer–Villiger oxidationsCatalytic reactionStereoselective catalystsEffect of additivesSolution conformationCatalystMolecular associationSubstrate-specific interactionsUnique structureSolution structureOxidationStructural analysisAdvantageous featuresSelectivityExperimental observationsPeptidesConformationStructureAdditivesReaction
2015
Site-Selective Reactions with Peptide-Based Catalysts
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. 2015, 372: 157-201. PMID: 26307403, DOI: 10.1007/128_2015_653.Peer-Reviewed Original ResearchA Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation
Giuliano MW, Lin C, Romney DK, Miller SJ, Anslyn EV. A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation. Advanced Synthesis & Catalysis 2015, 357: 2301-2309. PMID: 26543444, PMCID: PMC4629862, DOI: 10.1002/adsc.201500230.Peer-Reviewed Original ResearchAsymmetric Baeyer–Villiger oxidationBaeyer-Villiger oxidationSolution-phase reactionsBaeyer-Villiger monooxygenasesPeptide catalystsCatalyst discoveryChiroptical studiesSpeed of analysisCatalyst performanceFocused libraryLactone productsAsymmetric inductionAbsolute configurationCombinatorial screeningOxidationCatalystDistinct parallelsProductsReactionHPLCAlcoholMonooxygenases
2014
Diastereo- and Enantioselective Addition of Anilide-Functionalized Allenoates to N‑Acylimines Catalyzed by a Pyridylalanine-Based Peptide
Mbofana CT, Miller SJ. Diastereo- and Enantioselective Addition of Anilide-Functionalized Allenoates to N‑Acylimines Catalyzed by a Pyridylalanine-Based Peptide. Journal Of The American Chemical Society 2014, 136: 3285-3292. PMID: 24527787, DOI: 10.1021/ja412996f.Peer-Reviewed Original Research
2013
Chiral Copper(II) Complex-Catalyzed Reactions of Partially Protected Carbohydrates
Allen CL, Miller SJ. Chiral Copper(II) Complex-Catalyzed Reactions of Partially Protected Carbohydrates. Organic Letters 2013, 15: 6178-6181. PMID: 24274325, DOI: 10.1021/ol4033072.Peer-Reviewed Original ResearchConceptsCoupling of electrophilesCarbohydrate chemistryDivergent regioselectivityRegioselective functionalizationCatalyzed reactionsSaccharide moleculesSuch reactionsCatalystReactionManipulation stepsFunctionalizationChemistryElectrophilesChiralRegioselectivityEnantiomersSynthesisMoleculesHereinCopperSugarsCombined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors
Gould ND, Allen C, Nam BC, Schepartz A, Miller SJ. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research 2013, 382: 36-42. PMID: 24177201, DOI: 10.1016/j.carres.2013.09.011.Peer-Reviewed Original ResearchConceptsLewis acidGlycosylation reactionsCombined Lewis acidControl reactionsSubsequent kinetic studiesCatalytic systemBiomimetic conditionsCarboxylic acidsGlycosyl donorsIrreversible reactionKinetic studiesReactionAcid actsCatalytic componentAcidActive enzymeCarbohydrate-active enzymesCatalystProof of principleReactivityDonorsGlycosylStructureThe Roles of Counterion and Water in a Stereoselective Cysteine‐Catalyzed Rauhut–Currier Reaction: A Challenge for Computational Chemistry
Osuna S, Dermenci A, Miller SJ, Houk KN. The Roles of Counterion and Water in a Stereoselective Cysteine‐Catalyzed Rauhut–Currier Reaction: A Challenge for Computational Chemistry. Chemistry - A European Journal 2013, 19: 14245-14253. PMID: 24038400, PMCID: PMC3918516, DOI: 10.1002/chem.201300745.Peer-Reviewed Original ResearchConceptsRauhut-Currier reactionCysteine derivativesComplete reaction pathwayRole of counterionsPresence of counterionsRate-determining eliminationMichael addition productsDensity functional theoryComputational chemistryExplicit water solvationWater solvationPotassium counterionsReaction conditionsReaction pathwaysAddition productsEnantiomer pairsThiol catalystCatalyst eliminationPossible stereoisomersCurrier ReactionFunctional theoryCounterionsNucleophilesReactionDerivativesChemical Tailoring of Teicoplanin with Site-Selective Reactions
Pathak TP, Miller SJ. Chemical Tailoring of Teicoplanin with Site-Selective Reactions. Journal Of The American Chemical Society 2013, 135: 8415-8422. PMID: 23692563, PMCID: PMC3800266, DOI: 10.1021/ja4038998.Peer-Reviewed Original ResearchConceptsNew compoundsSelective cross-coupling reactionsChemical reactionsOrthogonal chemical reactionsSite-selective reactionsTotal chemical synthesisCross-coupling reactionsNatural product derivativesTwo-step accessChemical tailoringChemical synthesisProduct derivativesChemical modificationPoor selectivityAntibacterial propertiesAntibiotic teicoplaninReactionChemical alterationImproved analoguesCompoundsUnmet challengeAnaloguesSelectivitySemisynthesisComplex structureEnantioselective Synthesis of Atropisomeric Benzamides through Peptide-Catalyzed Bromination
Barrett KT, Miller SJ. Enantioselective Synthesis of Atropisomeric Benzamides through Peptide-Catalyzed Bromination. Journal Of The American Chemical Society 2013, 135: 2963-2966. PMID: 23410090, PMCID: PMC3596792, DOI: 10.1021/ja400082x.Peer-Reviewed Original ResearchConceptsEnantioselective synthesisElectrophilic aromatic substitution reactionsSeries of triAromatic substitution reactionMetal-halogen exchangeRange of compoundsCatalytic brominationNMR spectroscopySubstitution reactionsBrønsted baseObserved productsOrtho functionalizationTertiary aminesLow conversionSubstitution patternBrominationCatalystHigh barrierBenzamidesReactionTertiary benzamidesAppropriate substrateSynthesisFunctionalizationDibromination
2011
Chemoenzymatic Synthesis of Each Enantiomer of Orthogonally Protected 4,4-Difluoroglutamic Acid: A Candidate Monomer for Chiral Brønsted Acid Peptide-Based Catalysts
Li Y, Miller SJ. Chemoenzymatic Synthesis of Each Enantiomer of Orthogonally Protected 4,4-Difluoroglutamic Acid: A Candidate Monomer for Chiral Brønsted Acid Peptide-Based Catalysts. The Journal Of Organic Chemistry 2011, 76: 9785-9791. PMID: 22039908, PMCID: PMC3228520, DOI: 10.1021/jo2018679.Peer-Reviewed Original ResearchConceptsDifluoroglutamic acidEnhanced catalytic activityFunctional group manipulationsΑ-amino acidGlutamic acid derivativesReduction reactionOxidation reactionParent amino acidCoupling reactionCatalytic activityCandidate monomersChemoenzymatic synthesisSelective formationAsymmetric synthesisGroup manipulationsScalable procedurePeptide bondEnzymatic resolutionAcid derivativesSynthetic materialsSynthesisReactionEnantiomersAcidCatalystQuasi-biomimetic ring contraction promoted by a cysteine-based nucleophile: Total synthesis of Sch-642305, some analogs and their putative anti-HIV activities
Dermenci A, Selig PS, Domaoal RA, Spasov KA, Anderson KS, Miller SJ. Quasi-biomimetic ring contraction promoted by a cysteine-based nucleophile: Total synthesis of Sch-642305, some analogs and their putative anti-HIV activities. Chemical Science 2011, 2: 1568-1572. PMID: 24179673, PMCID: PMC3811095, DOI: 10.1039/c1sc00221j.Peer-Reviewed Original Research