2018
Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3‑Amidocyclohexanones
Shugrue C, Featherston AL, Lackner RM, Lin A, Miller SJ. Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3‑Amidocyclohexanones. The Journal Of Organic Chemistry 2018, 83: 4491-4504. PMID: 29547285, PMCID: PMC5963540, DOI: 10.1021/acs.joc.8b00207.Peer-Reviewed Original ResearchConceptsReductive aminationNumerous reactive sitesPeptide catalystsParallel kinetic resolutionDFT calculationsNMR studiesReactive sitesDivergent selectivitySecondary interactionsNatural productsKinetic resolutionCatalystAminationDivergent stereoselectivitiesCatalyzed Reductive AminationPeptide sequencesSelectivityComplex substratesSubstrateDiastereoselectivityStereoselectivityProductsReactivityPhosphopeptidesPhosphothreonine
2016
Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation
Abascal NC, Miller SJ. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation. Organic Letters 2016, 18: 4646-4649. PMID: 27588823, PMCID: PMC5130343, DOI: 10.1021/acs.orglett.6b02282.Peer-Reviewed Original ResearchConceptsBaeyer-Villiger oxidationPeptide-based catalystsStereoselective Baeyer–Villiger oxidationsCatalytic reactionStereoselective catalystsEffect of additivesSolution conformationCatalystMolecular associationSubstrate-specific interactionsUnique structureSolution structureOxidationStructural analysisAdvantageous featuresSelectivityExperimental observationsPeptidesConformationStructureAdditivesReaction
2014
Catalyst Control over Regio- and Enantioselectivity in Baeyer–Villiger Oxidations of Functionalized Ketones
Romney DK, Colvin SM, Miller SJ. Catalyst Control over Regio- and Enantioselectivity in Baeyer–Villiger Oxidations of Functionalized Ketones. Journal Of The American Chemical Society 2014, 136: 14019-14022. PMID: 25250713, PMCID: PMC4195385, DOI: 10.1021/ja508757g.Peer-Reviewed Original ResearchConceptsBaeyer-Villiger oxidationPeptide-based catalystsHydrogen bonding interactionsTypes of selectivityParallel kinetic resolutionCatalyst controlFunctionalized KetonesCyclic ketonesFunctional groupsNatural productsComplex moleculesKinetic resolutionAsymmetric processEnantioselectivityRegioKetonesOxidationBroad utilityCatalystCatalysisSelectivityAmidesSynthesisMoleculesProductsX‑ray Crystal Structure of Teicoplanin A2‑2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy
Han S, Le BV, Hajare HS, Baxter RH, Miller SJ. X‑ray Crystal Structure of Teicoplanin A2‑2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy. The Journal Of Organic Chemistry 2014, 79: 8550-8556. PMID: 25147913, PMCID: PMC4168787, DOI: 10.1021/jo501625f.Peer-Reviewed Original ResearchConceptsX-ray crystal structureTeicoplanin A2-2Crystal structurePeptide-based catalystsProtein ligation (IPL) techniqueCatalyst moietyPeptide catalystsComplex crystal structureMolecular arrangementN-methylimidazoleNucleophilic nitrogenObserved selectivitySugar ringCatalystPeptide sequencesT4 lysozymeDerivativesN-acetylglucosaminePhosphorylation reactionMoietyStructureSelectivityProtein strategyA2-2ComplexesExperimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst
Lichtor PA, Miller SJ. Experimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst. Journal Of The American Chemical Society 2014, 136: 5301-5308. PMID: 24690108, PMCID: PMC4333582, DOI: 10.1021/ja410567a.Peer-Reviewed Original Research
2013
Chemical Tailoring of Teicoplanin with Site-Selective Reactions
Pathak TP, Miller SJ. Chemical Tailoring of Teicoplanin with Site-Selective Reactions. Journal Of The American Chemical Society 2013, 135: 8415-8422. PMID: 23692563, PMCID: PMC3800266, DOI: 10.1021/ja4038998.Peer-Reviewed Original ResearchConceptsNew compoundsSelective cross-coupling reactionsChemical reactionsOrthogonal chemical reactionsSite-selective reactionsTotal chemical synthesisCross-coupling reactionsNatural product derivativesTwo-step accessChemical tailoringChemical synthesisProduct derivativesChemical modificationPoor selectivityAntibacterial propertiesAntibiotic teicoplaninReactionChemical alterationImproved analoguesCompoundsUnmet challengeAnaloguesSelectivitySemisynthesisComplex structure
2012
Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation
Lichtor PA, Miller SJ. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. Nature Chemistry 2012, 4: 990-995. PMID: 23174978, PMCID: PMC3506257, DOI: 10.1038/nchem.1469.Peer-Reviewed Original ResearchConceptsPeptide-based catalystsPossible stereochemical outcomesNon-enzymatic catalystsSimilar functional groupsCatalytic functionalizationEnantioselective catalystsChemical synthesisCombinatorial synthesisOxidation catalystAsymmetric oxidationEnzymatic catalysisCatalystEnantioselective oxidationFunctional groupsComplex moleculesStereochemical outcomeEvolution of enzymesSame moleculeOxidationSelectivitySynthesisCombinatorial evolutionMoleculesExhibit siteOnly precedent