2024
Scaffold‐Oriented Asymmetric Catalysis: Conformational Modulation of Transition State Multivalency during a Catalyst‐Controlled Assembly of a Pharmaceutically Relevant Atropisomer
Tampellini N, Mercado B, Miller S. Scaffold‐Oriented Asymmetric Catalysis: Conformational Modulation of Transition State Multivalency during a Catalyst‐Controlled Assembly of a Pharmaceutically Relevant Atropisomer. Chemistry - A European Journal 2024, 30: e202401109. PMID: 38507249, PMCID: PMC11132932, DOI: 10.1002/chem.202401109.Peer-Reviewed Original ResearchHydrogen bond donorAtroposelective synthesisAsymmetric catalysisGuanidine catalystCatalyst controlChiral axisBond donorNoncovalent interactionsConformational modulationCatalystFolded stateN-capAtroposelectivityAtropisomersSuperbasesPhenylCatalysisQuinazolinedionesMultivalencyBTK inhibitorsMechanistic frameworkStructure
2017
Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis
Toste FD, Sigman MS, Miller SJ. Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Accounts Of Chemical Research 2017, 50: 609-615. PMID: 28945415, PMCID: PMC5643260, DOI: 10.1021/acs.accounts.6b00613.Peer-Reviewed Original Research
2016
Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation
Abascal NC, Miller SJ. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation. Organic Letters 2016, 18: 4646-4649. PMID: 27588823, PMCID: PMC5130343, DOI: 10.1021/acs.orglett.6b02282.Peer-Reviewed Original ResearchConceptsBaeyer-Villiger oxidationPeptide-based catalystsStereoselective Baeyer–Villiger oxidationsCatalytic reactionStereoselective catalystsEffect of additivesSolution conformationCatalystMolecular associationSubstrate-specific interactionsUnique structureSolution structureOxidationStructural analysisAdvantageous featuresSelectivityExperimental observationsPeptidesConformationStructureAdditivesReaction
2014
X‑ray Crystal Structure of Teicoplanin A2‑2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy
Han S, Le BV, Hajare HS, Baxter RH, Miller SJ. X‑ray Crystal Structure of Teicoplanin A2‑2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy. The Journal Of Organic Chemistry 2014, 79: 8550-8556. PMID: 25147913, PMCID: PMC4168787, DOI: 10.1021/jo501625f.Peer-Reviewed Original ResearchConceptsX-ray crystal structureTeicoplanin A2-2Crystal structurePeptide-based catalystsProtein ligation (IPL) techniqueCatalyst moietyPeptide catalystsComplex crystal structureMolecular arrangementN-methylimidazoleNucleophilic nitrogenObserved selectivitySugar ringCatalystPeptide sequencesT4 lysozymeDerivativesN-acetylglucosaminePhosphorylation reactionMoietyStructureSelectivityProtein strategyA2-2Complexes
2013
Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors
Gould ND, Allen C, Nam BC, Schepartz A, Miller SJ. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research 2013, 382: 36-42. PMID: 24177201, DOI: 10.1016/j.carres.2013.09.011.Peer-Reviewed Original ResearchConceptsLewis acidGlycosylation reactionsCombined Lewis acidControl reactionsSubsequent kinetic studiesCatalytic systemBiomimetic conditionsCarboxylic acidsGlycosyl donorsIrreversible reactionKinetic studiesReactionAcid actsCatalytic componentAcidActive enzymeCarbohydrate-active enzymesCatalystProof of principleReactivityDonorsGlycosylStructure
2012
Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects
Fowler BS, Laemmerhold KM, Miller SJ. Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects. Journal Of The American Chemical Society 2012, 134: 9755-9761. PMID: 22621706, PMCID: PMC3374881, DOI: 10.1021/ja302692j.Peer-Reviewed Original ResearchConceptsPeptide-based catalystsForm of vancomycinNew compoundsVancomycin derivativesRational designConformational consequencesCatalystConformational effectsNew analoguesSelectivity profileBiological activityThiocarbonylationDeoxygenationNative structureStructural roleHydroxylCompoundsDerivativesAnaloguesSubstrateStructure