2015
A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin ‘in-chloride’
Wadzinski TJ, Gea KD, Miller SJ. A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin ‘in-chloride’. Bioorganic & Medicinal Chemistry Letters 2015, 26: 1025-1028. PMID: 26725950, PMCID: PMC4728044, DOI: 10.1016/j.bmcl.2015.12.027.Peer-Reviewed Original ResearchStructure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens
Yoganathan S, Miller SJ. Structure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens. Journal Of Medicinal Chemistry 2015, 58: 2367-2377. PMID: 25671771, PMCID: PMC4364393, DOI: 10.1021/jm501872s.Peer-Reviewed Original ResearchConceptsStructure diversificationLipid chain lengthStructure-activity relationship studiesPeptide catalystsCatalytic approachAliphatic hydroxylDerivatization sitesDerivatives 9aGlycopeptide-resistant pathogensNovel antibiotic leadsChain lengthLipid chainsRelationship studiesAntibiotic leadsCatalystCatalysisAntibiotic-resistant infectionsHydroxylHereinScaffoldsBioactivityChainSpectraLipidationIncorporation
2012
Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects
Fowler BS, Laemmerhold KM, Miller SJ. Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects. Journal Of The American Chemical Society 2012, 134: 9755-9761. PMID: 22621706, PMCID: PMC3374881, DOI: 10.1021/ja302692j.Peer-Reviewed Original ResearchConceptsPeptide-based catalystsForm of vancomycinNew compoundsVancomycin derivativesRational designConformational consequencesCatalystConformational effectsNew analoguesSelectivity profileBiological activityThiocarbonylationDeoxygenationNative structureStructural roleHydroxylCompoundsDerivativesAnaloguesSubstrateStructure