2016
d-3-Deoxy-dioctanoylphosphatidylinositol induces cytotoxicity in human MCF-7 breast cancer cells via a mechanism that involves downregulation of the D-type cyclin-retinoblastoma pathway
Gradziel CS, Jordan PA, Jewel D, Dufort FJ, Miller SJ, Chiles TC, Roberts MF. d-3-Deoxy-dioctanoylphosphatidylinositol induces cytotoxicity in human MCF-7 breast cancer cells via a mechanism that involves downregulation of the D-type cyclin-retinoblastoma pathway. Biochimica Et Biophysica Acta 2016, 1861: 1808-1815. PMID: 27600289, PMCID: PMC5115159, DOI: 10.1016/j.bbalip.2016.09.001.Peer-Reviewed Original ResearchMeSH KeywordsBreast NeoplasmsCell DeathCyclin D1Down-RegulationFemaleHumansMagnetic Resonance SpectroscopyMCF-7 CellsP38 Mitogen-Activated Protein KinasesPhosphatidic AcidsPhosphatidylinositolsPhosphorylationPleckstrin Homology DomainsProto-Oncogene Proteins c-aktRetinoblastoma ProteinRNA, Small InterferingSignal TransductionConceptsMCF-7 breast cancer cellsBreast cancer cellsAkt PH domainPhosphatidylinositol analoguesD-type cyclinsCancer cellsCyclin D1Cleavage of PARPPH domainProtein phosphorylationMembrane translocationActive AktHuman MCF-7 breast cancer cellsGrowth arrestCaspase-9Endogenous levelsCyclin D3Cell proliferationAlkylphospholipid perifosineMCF-7 cell proliferationAnti-proliferative activityAktPathwayDownregulationDistal Stereocontrol Using Guanidinylated Peptides as Multifunctional Ligands: Desymmetrization of Diarylmethanes via Ullman Cross-Coupling
Kim B, Chinn AJ, Fandrick DR, Senanayake CH, Singer RA, Miller SJ. Distal Stereocontrol Using Guanidinylated Peptides as Multifunctional Ligands: Desymmetrization of Diarylmethanes via Ullman Cross-Coupling. Journal Of The American Chemical Society 2016, 138: 7939-7945. PMID: 27254785, PMCID: PMC5127171, DOI: 10.1021/jacs.6b03444.Peer-Reviewed Original ResearchMeSH KeywordsBromidesCatalysisChemistry, OrganicCopperKineticsLigandsMagnetic Resonance SpectroscopyMalonatesMetalsMethaneMolecular StructurePeptidesProtein BindingProtein DomainsStereoisomerism
2014
Multivalency as a Key Factor for High Activity of Selective Supported Organocatalysts for the Baylis–Hillman Reaction
Goren K, Karabline‐Kuks J, Shiloni Y, Barak‐Kulbak E, Miller SJ, Portnoy M. Multivalency as a Key Factor for High Activity of Selective Supported Organocatalysts for the Baylis–Hillman Reaction. Chemistry - A European Journal 2014, 21: 1191-1197. PMID: 25376519, DOI: 10.1002/chem.201404560.Peer-Reviewed Original ResearchConceptsNew carbon-carbon bondsCarbon-carbon bondsRate-determining proton transferThird generation analoguesMethyl vinyl ketoneBaylis–Hillman reactionAnalogous catalystsDendritic catalystsSupported OrganocatalystsImidazole unitsDendritic effectReaction solventIntermediate adductModel reactionProton transferImidazole moietyActive substratesVinyl ketoneCatalystP-nitrobenzaldehydeReaction yieldMultivalent architectureHigh activityContent of waterHigher generationsExperimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst
Lichtor PA, Miller SJ. Experimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst. Journal Of The American Chemical Society 2014, 136: 5301-5308. PMID: 24690108, PMCID: PMC4333582, DOI: 10.1021/ja410567a.Peer-Reviewed Original ResearchPeptide-Catalyzed Conversion of Racemic Oxazol-5(4H)‑ones into Enantiomerically Enriched α‑Amino Acid Derivatives
Metrano AJ, Miller SJ. Peptide-Catalyzed Conversion of Racemic Oxazol-5(4H)‑ones into Enantiomerically Enriched α‑Amino Acid Derivatives. The Journal Of Organic Chemistry 2014, 79: 1542-1554. PMID: 24517453, DOI: 10.1021/jo402828f.Peer-Reviewed Original ResearchAmino AcidsCatalysisMagnetic Resonance SpectroscopyMolecular StructureOxazolesOxazolonePeptidesStereoisomerism