2023
Massively parallel knock-in engineering of human T cells
Dai X, Park J, Du Y, Na Z, Lam S, Chow R, Renauer P, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nature Biotechnology 2023, 41: 1239-1255. PMID: 36702900, PMCID: PMC11260498, DOI: 10.1038/s41587-022-01639-x.Peer-Reviewed Original Research
2021
Tumor immunology CRISPR screening: present, past, and future
Dong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends In Cancer 2021, 8: 210-225. PMID: 34920978, PMCID: PMC8854335, DOI: 10.1016/j.trecan.2021.11.009.Peer-Reviewed Original Research
2020
A web tool for the design of prime-editing guide RNAs
Chow RD, Chen JS, Shen J, Chen S. A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering 2020, 5: 190-194. PMID: 32989284, PMCID: PMC7882013, DOI: 10.1038/s41551-020-00622-8.Peer-Reviewed Original Research
2019
In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma
Ye L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, Du Y, Guo J, Dai X, Wang G, Errami Y, Chen S. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology 2019, 37: 1302-1313. PMID: 31548728, PMCID: PMC6834896, DOI: 10.1038/s41587-019-0246-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDCD8-Positive T-LymphocytesCell Line, TumorCRISPR-Cas SystemsDependovirusFemaleGene EditingGlioblastomaHumansImmunotherapy, AdoptiveLymphocyte Activation Gene 3 ProteinMaleMembrane ProteinsMiceN-AcetylglucosaminyltransferasesNeoplasm ProteinsProtein Disulfide-IsomerasesReceptors, Cell SurfaceRNA, Guide, CRISPR-Cas SystemsTransposasesXenograft Model Antitumor AssaysConceptsRNA cassetteMembrane protein targetsPrimary murine T cellsGenetic screening systemSingle-cell sequencingScreen hitsSleeping Beauty (SB) transposonCRISPR screensMembrane proteinsCell sequencingT cellsAdeno-associated virusGenomic integrationMembrane targetsMurine T cellsProtein targetsEfficient geneHuman GBM cellsGene editingT cell receptor transgenic modelGBM cellsBeauty transposonPDIA3T cell-based immunotherapyAntigen-specific killingCooperative adaptation to therapy (CAT) confers resistance in heterogeneous non-small cell lung cancer
Craig M, Kaveh K, Woosley A, Brown AS, Goldman D, Eton E, Mehta RM, Dhawan A, Arai K, Rahman MM, Chen S, Nowak MA, Goldman A. Cooperative adaptation to therapy (CAT) confers resistance in heterogeneous non-small cell lung cancer. PLOS Computational Biology 2019, 15: e1007278. PMID: 31449515, PMCID: PMC6709889, DOI: 10.1371/journal.pcbi.1007278.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalCarcinoma, Non-Small-Cell LungCell Line, TumorCell ProliferationCoculture TechniquesComputational BiologyComputer SimulationCRISPR-Cas SystemsDEAD-box RNA HelicasesDrug Resistance, MultipleDrug Resistance, NeoplasmHumansLung NeoplasmsModels, BiologicalMutationRibonuclease IIIConceptsCancer cellsCell state transitionsWild-type cellsCooperative adaptationNon-small cell lung cancer cellsInterspecies competitionCell lung cancer cellsCRISPR/Drug-sensitive cellsLung cancer cellsNSCLC patient samplesDruggable targetsDrug pressureMutantsFlow cytometry dataPhenotypic heterogeneitySensitive cellsIn vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens
Chow RD, Wang G, Ye L, Codina A, Kim HR, Shen L, Dong MB, Errami Y, Chen S. In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nature Methods 2019, 16: 405-408. PMID: 30962622, PMCID: PMC6592845, DOI: 10.1038/s41592-019-0371-5.Peer-Reviewed Original Research
2017
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications
Pyzocha NK, Chen S. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology 2017, 13: 347-356. PMID: 29121460, PMCID: PMC6768076, DOI: 10.1021/acschembio.7b00800.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsCRISPR-Associated ProteinsCRISPR-Cas SystemsEndonucleasesGene EditingGenomeHumansRNA, Guide, CRISPR-Cas SystemsConceptsGenome engineering applicationsCRISPR-Cas genome editing technologiesMicrobial adaptive immune systemGenome editing technologyEffector enzymeNucleic acid cleavageEditing technologyUnique propertiesModern molecular biologyEngineering applicationsEffector proteinsMammalian cellsMolecular biologyAdaptive immune systemWide diversityTechnologyEnzymeApplicationsFunctionalityAcid cleavageImmune systemBiologyProteinDNADiversityAAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience 2017, 20: 1329-1341. PMID: 28805815, PMCID: PMC5614841, DOI: 10.1038/nn.4620.Peer-Reviewed Original Research
2015
Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis
Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell 2015, 160: 1246-1260. PMID: 25748654, PMCID: PMC4380877, DOI: 10.1016/j.cell.2015.02.038.Peer-Reviewed Original ResearchConceptsSingle guide RNAsGenome-wide CRISPR screenGenome-scale libraryCRISPR/Cas9-mediated lossLate-stage primary tumorsEffects of mutationsGenetic screenTumor growthCRISPR screensFunction screenMouse cancer cell linesCancer evolutionGene phenotypeDiverse phenotypesFunction mutationsCancer cell linesGenesCell linesPrimary screenCell poolSpecific lossPrimary tumor growthSmall poolMutationsPhenotype
2014
CRISPR-mediated direct mutation of cancer genes in the mouse liver
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514: 380-384. PMID: 25119044, PMCID: PMC4199937, DOI: 10.1038/nature13589.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBeta CateninCell Transformation, NeoplasticClustered Regularly Interspaced Short Palindromic RepeatsCRISPR-Cas SystemsFemaleGenes, p53Genes, Tumor SuppressorGenetic EngineeringHepatocytesLipid MetabolismLiverLiver NeoplasmsMiceMolecular Sequence DataMutagenesisMutationOncogenesPhosphorylationProto-Oncogene Proteins c-aktPTEN PhosphohydrolaseGenome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 2014, 32: 670-676. PMID: 24752079, PMCID: PMC4145672, DOI: 10.1038/nbt.2889.Peer-Reviewed Original ResearchGenome editing with Cas9 in adult mice corrects a disease mutation and phenotype
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology 2014, 32: 551-553. PMID: 24681508, PMCID: PMC4157757, DOI: 10.1038/nbt.2884.Peer-Reviewed Original Research