2020
CD4+ follicular regulatory T cells optimize the influenza virus–specific B cell response
Lu Y, Jiang R, Freyn AW, Wang J, Strohmeier S, Lederer K, Locci M, Zhao H, Angeletti D, O’Connor K, Kleinstein SH, Nachbagauer R, Craft J. CD4+ follicular regulatory T cells optimize the influenza virus–specific B cell response. Journal Of Experimental Medicine 2020, 218: e20200547. PMID: 33326020, PMCID: PMC7748821, DOI: 10.1084/jem.20200547.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationAntigensB-LymphocytesCD4 AntigensDisease Models, AnimalEpitopesForkhead Transcription FactorsGerminal CenterHumansImmunityImmunologic MemoryInfluenza, HumanInfluenzavirus BIntegrasesMice, Inbred C57BLOrthomyxoviridae InfectionsReceptors, Antigen, B-CellSpecies SpecificityT-Lymphocytes, RegulatoryVaccinationConceptsB cell responsesGerminal center B cell responsesFollicular regulatory T cellsRegulatory T cellsTfr cellsCell responsesT cellsViral challengeHumoral memoryVirus-specific B cell responsesAntigen-specific B cell responsesFollicular helper T cellsHA stalk regionHelper T cellsInfluenza virus infectionGerminal center developmentAntibody responsePlasma cellsVirus infectionImmunization modelAntibody productionBCR repertoireInfluenza virusRepeated exposureInfluenza virus glycoproteinsHuman germinal centres engage memory and naive B cells after influenza vaccination
Turner JS, Zhou JQ, Han J, Schmitz AJ, Rizk AA, Alsoussi WB, Lei T, Amor M, McIntire KM, Meade P, Strohmeier S, Brent RI, Richey ST, Haile A, Yang YR, Klebert MK, Suessen T, Teefey S, Presti RM, Krammer F, Kleinstein SH, Ward AB, Ellebedy AH. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 2020, 586: 127-132. PMID: 32866963, PMCID: PMC7566073, DOI: 10.1038/s41586-020-2711-0.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsB-LymphocytesClone CellsEpitope MappingFemaleGerminal CenterHumansImmunologic MemoryInfluenza VaccinesInfluenza, HumanMaleMiceConceptsB cell clonesInfluenza vaccinationGerminal center B cellsB cellsGerminal center reactionCell clonesLymph nodesMonoclonal antibodiesPre-existing memory B cellsGerminal center B cell responsesStrain-specific monoclonal antibodiesCenter reactionUltrasound-guided fine-needle aspirationMajor public health threatEarly plasmablast responsesInfluenza virus vaccinationSeasonal influenza vaccinationCross-reactive monoclonal antibodiesB cell responsesMemory B cellsB-cell originFine-needle aspirationNaive B cellsPublic health threatHuman germinal centre
2019
Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation
Austin JW, Buckner CM, Kardava L, Wang W, Zhang X, Melson VA, Swanson RG, Martins AJ, Zhou JQ, Hoehn KB, Fisk JN, Dimopoulos Y, Chassiakos A, O'Dell S, Smelkinson MG, Seamon CA, Kwan RW, Sneller MC, Pittaluga S, Doria-Rose NA, McDermott A, Li Y, Chun TW, Kleinstein SH, Tsang JS, Petrovas C, Moir S. Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Science Translational Medicine 2019, 11 PMID: 31776286, PMCID: PMC7479651, DOI: 10.1126/scitranslmed.aax0904.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, NeutralizingAntibody AffinityAntigens, CD19B-LymphocytesCytokinesFemaleGerminal CenterHIV InfectionsHumansImmunologic MemoryLymph NodesMaleMiddle AgedMutation RatePhenotypeReceptors, Antigen, B-CellT-Box Domain ProteinsT-Lymphocytes, Helper-InducerTranscriptomeYoung AdultConceptsHIV-specific B cellsT-betGC B cellsGerminal centersB cellsLymph nodesPoor affinity maturationChronic immune activationMemory B cell compartmentAntibody-mediated immunityChronic infectious diseaseOptimal antibody responseB cell compartmentChronic human infectionsB cell receptorHIV viremiaImmunologic outcomesHIV infectionViremic individualsChronic viremiaImmune activationPeripheral bloodProtective antibodiesAntibody responseCD19Phenotypic and Ig Repertoire Analyses Indicate a Common Origin of IgD−CD27− Double Negative B Cells in Healthy Individuals and Multiple Sclerosis Patients
Fraussen J, Marquez S, Takata K, Beckers L, Montes Diaz G, Zografou C, Van Wijmeersch B, Villar LM, O'Connor KC, Kleinstein SH, Somers V. Phenotypic and Ig Repertoire Analyses Indicate a Common Origin of IgD−CD27− Double Negative B Cells in Healthy Individuals and Multiple Sclerosis Patients. The Journal Of Immunology 2019, 203: 1650-1664. PMID: 31391234, PMCID: PMC6736705, DOI: 10.4049/jimmunol.1801236.Peer-Reviewed Original ResearchConceptsDN B cellsDouble-negative B cellsMultiple sclerosis patientsMS patientsNegative B cellsHealthy controlsClass-switched memoryB cellsAdaptive immune receptor repertoire sequencingSclerosis patientsRepertoire sequencingFrequency of CD95Naive B cellsUnique differentiation pathwayLow CD5Proinflammatory characteristicsImmune agingCD38 expressionHealthy individualsPatientsFlow cytometryLow mutation loadCD27Repertoire analysisMaturation stateMigrant memory B cells secrete luminal antibody in the vagina
Oh JE, Iijima N, Song E, Lu P, Klein J, Jiang R, Kleinstein SH, Iwasaki A. Migrant memory B cells secrete luminal antibody in the vagina. Nature 2019, 571: 122-126. PMID: 31189952, PMCID: PMC6609483, DOI: 10.1038/s41586-019-1285-1.Peer-Reviewed Original ResearchConceptsMemory B cellsFemale reproductive tractB cellsPlasma cellsReproductive tractCD4 tissue-resident memory T cellsTissue-resident memory T cellsLower female reproductive tractHerpes simplex virus 2Genital herpes infectionMemory T cellsExpression of chemokinesSimplex virus 2CXCR3-dependent mannerLocal plasma cellsLuminal antibodyMucosal antibodiesHerpes infectionPrimary infectionMucosal barrierSecondary challengeVariety of pathogensT cellsLamina propriaInducible source
2018
Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue
Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu YB, Zhou JQ, Petrov N, Ellis R, Todd K, Chavele KM, Guesdon W, Vossenkamper A, Jassem W, D’Cruz D, Fear DJ, John S, Scheel-Toellner D, Hopkins C, Moreno E, Woodman NL, Ciccarelli F, Heck S, Kleinstein SH, Bemark M, Spencer J. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nature Communications 2018, 9: 3857. PMID: 30242242, PMCID: PMC6155012, DOI: 10.1038/s41467-018-06089-1.Peer-Reviewed Original ResearchConceptsMemory B cellsMZ B cellsLymphoid tissueB cellsClassical memory B cellsMemory B cell populationsDistant lymphoid tissuesGut lymphoid tissueExpression of CD27Marginal zone B cellsB cell poolHuman memory B cellsB cell populationsSomatic mutationsMicroanatomical nichesGerminal centersPhenotypic progressionCell poolMass cytometryCell populationsIGHV repertoireTissueMarginal zoneCellsPopulation
2017
Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8+ T Cell Terminal Differentiation and Loss of Multipotency
Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8+ T Cell Terminal Differentiation and Loss of Multipotency. Immunity 2017, 46: 596-608. PMID: 28410989, PMCID: PMC5457165, DOI: 10.1016/j.immuni.2017.03.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesCell DifferentiationChromatinEnhancer of Zeste Homolog 2 ProteinFlow CytometryForkhead Box Protein O1Gene ExpressionHistonesImmunoblottingImmunologic MemoryLysineMethylationMice, Inbred C57BLMice, KnockoutMice, TransgenicModels, ImmunologicalMultipotent Stem CellsPolycomb Repressive Complex 2Reverse Transcriptase Polymerase Chain ReactionConceptsH3K27me3 depositionPolycomb repressive complex 2T cell terminal differentiationRepressive complex 2MP cellsLoss of multipotencyPro-survival genesCell terminal differentiationFate restrictionPermissive chromatinEpigenetic silencingMemory cell potentialDevelopmental plasticityCell developmentTerminal differentiationCell differentiationGenesPrecursor cellsFOXO1 expressionChromatinMemory precursor cellsMultipotencyCell maturationClonal expansionCellsDysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing
Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, Barohn RJ, Dimachkie MM, Ciafaloni E, Broering TJ, Vigneault F, Nowak RJ, Kleinstein SH, O'Connor KC. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. The Journal Of Immunology 2017, 198: 1460-1473. PMID: 28087666, PMCID: PMC5296243, DOI: 10.4049/jimmunol.1601415.Peer-Reviewed Original ResearchConceptsDeep sequencing
2015
Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells
Laidlaw BJ, Cui W, Amezquita RA, Gray SM, Guan T, Lu Y, Kobayashi Y, Flavell RA, Kleinstein SH, Craft J, Kaech SM. Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells. Nature Immunology 2015, 16: 871-879. PMID: 26147684, PMCID: PMC4713030, DOI: 10.1038/ni.3224.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsCD8-Positive T-LymphocytesDendritic CellsFlow CytometryGene Expression ProfilingHost-Pathogen InteractionsImmunologic MemoryInflammationInterleukin-10Lymphocytic ChoriomeningitisLymphocytic choriomeningitis virusMice, Inbred C57BLMice, KnockoutReverse Transcriptase Polymerase Chain ReactionT-Lymphocytes, Regulatory
2014
CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype
Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H, Kleinstein SH, Good-Jacobson KL, Shlomchik MJ. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nature Immunology 2014, 15: 631-637. PMID: 24880458, PMCID: PMC4105703, DOI: 10.1038/ni.2914.Peer-Reviewed Original ResearchTLR4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A Differentially Regulate Effector and Memory CD8+ T Cell Differentiation
Cui W, Joshi NS, Liu Y, Meng H, Kleinstein SH, Kaech SM. TLR4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A Differentially Regulate Effector and Memory CD8+ T Cell Differentiation. The Journal Of Immunology 2014, 192: 4221-4232. PMID: 24659688, PMCID: PMC4071140, DOI: 10.4049/jimmunol.1302569.Peer-Reviewed Original ResearchConceptsT cell differentiationT cellsEffector cellsTLR ligandsToll/IL-1R domain-containing adapterClonal expansionMore memory T cellsMemory T cellsT cell memoryEffector cell expansionTLR4 ligand LPSMonophosphoryl lipid ARole of adjuvantsTLR4 ligand lipopolysaccharideCell differentiationGene expression signaturesMemory CD8LPS-TLR4TLR4 ligandMonophosphoryl lipidLigand LPSLigand lipopolysaccharideAb productionSecondary infectionCell memory
2011
Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4+ Cell Properties during Viral Infection
Marshall HD, Chandele A, Jung YW, Meng H, Poholek AC, Parish IA, Rutishauser R, Cui W, Kleinstein SH, Craft J, Kaech SM. Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4+ Cell Properties during Viral Infection. Immunity 2011, 35: 633-646. PMID: 22018471, PMCID: PMC3444169, DOI: 10.1016/j.immuni.2011.08.016.Peer-Reviewed Original ResearchConceptsAcute viral infectionViral infectionEffector cellsTfh cell markersVirus-specific effectorT helper 1Th1 effector cellsT-bet expressionIL-7R expressionMemory precursor cellsTh1 CD4Helper 1Memory TTh1 cellsProliferative responseSecondary infectionEffector typeReliable markerCell markersInfectionPrecursor cellsGene expression profilesLy6CCell featuresCell development