Featured Publications
Maturation of germinal center B cells after influenza virus vaccination in humans
McIntire K, Meng H, Lin T, Kim W, Moore N, Han J, McMahon M, Wang M, Malladi S, Mohammed B, Zhou J, Schmitz A, Hoehn K, Carreño J, Yellin T, Suessen T, Middleton W, Teefey S, Presti R, Krammer F, Turner J, Ward A, Wilson I, Kleinstein S, Ellebedy A. Maturation of germinal center B cells after influenza virus vaccination in humans. Journal Of Experimental Medicine 2024, 221: e20240668. PMID: 38935072, PMCID: PMC11211068, DOI: 10.1084/jem.20240668.Peer-Reviewed Original ResearchConceptsB cellsInfluenza vaccineGerminal centersAntigen-specific GC B cellsResponse to seasonal influenza vaccinationLong-lived bone marrow plasma cellsResponse to influenza vaccinationBone marrow plasma cellsGerminal center B cellsGC B cell clonesInfluenza virus vaccineMaturation of B cellsMarrow plasma cellsSeasonal influenza vaccineMemory B cellsHemagglutinin (HAB cell clonesGC B cellsInfluenza hemagglutinin (HAH5 HANeedle aspirationLymphoid structuresLymph nodesPlasma cellsGC reaction
2023
Prior cycles of anti-CD20 antibodies affect antibody responses after repeated SARS-CoV-2 mRNA vaccination
Asashima H, Kim D, Wang K, Lele N, Buitrago-Pocasangre N, Lutz R, Cruz I, Raddassi K, Ruff W, Racke M, Wilson J, Givens T, Grifoni A, Weiskopf D, Sette A, Kleinstein S, Montgomery R, Shaw A, Li F, Fan R, Hafler D, Tomayko M, Longbrake E. Prior cycles of anti-CD20 antibodies affect antibody responses after repeated SARS-CoV-2 mRNA vaccination. JCI Insight 2023, 8: e168102. PMID: 37606046, PMCID: PMC10543713, DOI: 10.1172/jci.insight.168102.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntibodies, MonoclonalAntibody FormationAntilymphocyte SerumBNT162 VaccineCOVID-19HumansRNA, MessengerSARS-CoV-2VaccinationConceptsSARS-CoV-2 mRNA vaccinationB-cell-depleted patientsB-cell depletionAntibody responseMRNA vaccinationThird doseCell depletionT cellsClaude D. Pepper Older Americans Independence CenterB cellsNational Multiple Sclerosis SocietyAnti-CD20 antibodySpike-specific antibodiesMultiple Sclerosis SocietyLow cumulative exposureLogistic regression modelsImportant clinical needCD20 therapyCD20 treatmentMost patientsThird vaccineSerologic responseVaccine dosesMRNA vaccinesVaccination strategies
2022
Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O’Connor K. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathologica Communications 2022, 10: 154. PMID: 36307868, PMCID: PMC9617453, DOI: 10.1186/s40478-022-01454-0.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAutoantibodiesClone CellsHumansMyasthenia GravisNeoplasm Recurrence, LocalReceptor Protein-Tyrosine KinasesReceptors, Antigen, B-CellConceptsB cell depletion therapyB cell clonesMuSK-MG patientsMyasthenia gravisB cellsMG patientsDepletion therapyCell clonesAutoantibody-producing B cellsMuscle-specific tyrosine kinaseComplete stable remissionB cell receptor repertoireCell receptor repertoireValuable candidate biomarkersB cell receptorMG relapseClinical relapseStable remissionDisease relapseAutoimmune disordersRelapsePatientsAcetylcholine receptorsCandidate biomarkersReceptor repertoire
2020
A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM, Winkler ES, Fox JM, Kafai NM, Thackray LB, Hassan AO, Amanat F, Krammer F, Watson CT, Kleinstein SH, Fremont DH, Diamond MS, Ellebedy AH. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. The Journal Of Immunology 2020, 205: ji2000583. PMID: 32591393, PMCID: PMC7566074, DOI: 10.4049/jimmunol.2000583.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2AnimalsAntibodies, MonoclonalAntibodies, NeutralizingAntibodies, ViralBetacoronavirusChlorocebus aethiopsCoronavirus InfectionsCOVID-19Disease Models, AnimalEpitope MappingFemaleHEK293 CellsHumansImmunodominant EpitopesMiceMice, Inbred C57BLPandemicsPeptidyl-Dipeptidase APneumonia, ViralProtein Interaction Domains and MotifsSARS-CoV-2Spike Glycoprotein, CoronavirusTransfectionVero CellsConceptsSARS-CoV-2 infectionSARS-CoV-2Receptor-binding domainSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Angiotensin-converting enzyme 2Human angiotensin-converting enzyme 2Wild-type SARS-CoV-2Lung viral loadsSyndrome coronavirus 2Millions of infectionsTrimeric spike glycoproteinLicensed therapeuticsViral loadCoronavirus 2Systemic disseminationEffective antiviralsEnzyme 2Murine modelMurine mAbsEffective interventionsInfectionWeight lossSpike glycoprotein
2016
Generation of Long-Lived Bone Marrow Plasma Cells Secreting Antibodies Specific for the HIV-1 gp41 Membrane-Proximal External Region in the Absence of Polyreactivity
Donius LR, Cheng Y, Choi J, Sun ZY, Hanson M, Zhang M, Gierahn TM, Marquez S, Uduman M, Kleinstein SH, Irvine D, Love JC, Reinherz EL, Kim M. Generation of Long-Lived Bone Marrow Plasma Cells Secreting Antibodies Specific for the HIV-1 gp41 Membrane-Proximal External Region in the Absence of Polyreactivity. Journal Of Virology 2016, 90: 8875-8890. PMID: 27466419, PMCID: PMC5021391, DOI: 10.1128/jvi.01089-16.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalEpitopes, B-LymphocyteHIV AntibodiesHIV AntigensHIV Envelope Protein gp41Membrane LipidsPlasma CellsConceptsMPER-specific antibodiesAntigen specificityB cellsAntigen-specific antibody responsesHIV-1 gp41 membrane-proximal external regionAmino acid sequenceBone marrow plasmaEffective preventive vaccineHIV-1 bnAbsHIV-1 cladesHIV-1 pandemicGp41 membrane-proximal external regionAnti-MPER antibodiesContext of lipidPositive selectionRegion amino acid sequencesSelective pressureAcid sequenceMembrane-proximal external regionMarrow plasmaPreventive vaccineAntibody responseBiophysical characterizationPlasma cellsVaccine formulations
2015
Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation
Di Niro R, Lee SJ, Vander Heiden J, Elsner RA, Trivedi N, Bannock JM, Gupta NT, Kleinstein SH, Vigneault F, Gilbert TJ, Meffre E, McSorley SJ, Shlomchik MJ. Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation. Immunity 2015, 43: 120-131. PMID: 26187411, PMCID: PMC4523395, DOI: 10.1016/j.immuni.2015.06.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalB-LymphocytesClonal Selection, Antigen-MediatedGerminal CenterImmunoglobulin GLymphocyte ActivationMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutReceptors, Antigen, B-CellSalmonella InfectionsSalmonella typhimuriumSomatic Hypermutation, ImmunoglobulinSpleenConceptsB cell receptorExtrafollicular sitesGerminal centersAffinity maturationInfection of miceB cell responsesB cell activationDetectable antibodiesSomatic hypermutationExtrafollicular responseAntigen microarraysSalmonella infectionAntigen targetsCell activationSalmonella typhimuriumCell responsesBCR specificityFlow cytometryCell receptorMonoclonal antibodiesUndetectable affinityClonal selectionInfectionAntibodiesLaser microdissection