2024
High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC)
Moutafi M, Bates K, Aung T, Milian R, Xirou V, Vathiotis I, Gavrielatou N, Angelakis A, Schalper K, Salichos L, Rimm D. High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC). Journal For ImmunoTherapy Of Cancer 2024, 12: e009039. PMID: 38857914, PMCID: PMC11168162, DOI: 10.1136/jitc-2024-009039.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerImmune checkpoint inhibitorsProgrammed cell death protein 1Associated with OSCell lung cancerTissue microarray spotsTissue microarrayValidation cohortLung cancerNon-small cell lung cancer treated with immune checkpoint inhibitorsAssociated with resistance to immunotherapyCell death protein 1Resistance to immunotherapyAssociated with PFSProgression-free survivalSecreted frizzled-related protein 2Cox proportional-hazards model analysisCheckpoint inhibitorsImmunotherapy strategiesTumor compartmentsRetrospective cohortDiscovery cohortLong-term benefitsPatientsCD68
2019
Yiqi Chutan Tang Reduces Gefitinib‐Induced Drug Resistance in Non‐Small‐Cell Lung Cancer by Targeting Apoptosis and Autophagy
Zhang J, Sun L, Cui J, Wang J, Liu X, Aung T, Qu Z, Chen Z, Adelson D, Lin L. Yiqi Chutan Tang Reduces Gefitinib‐Induced Drug Resistance in Non‐Small‐Cell Lung Cancer by Targeting Apoptosis and Autophagy. Cytometry Part A 2019, 97: 70-77. PMID: 31411813, PMCID: PMC7004076, DOI: 10.1002/cyto.a.23869.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptor tyrosine kinase inhibitorsEGFR mutationsGrowth factor receptor tyrosine kinase inhibitorsDrug resistanceReceptor tyrosine kinase inhibitorsEGFR TKI-resistant cellsEGFR-TKI resistanceNew treatment strategiesGefitinib-induced apoptosisAnti-cancer effectsLower survival rateWestern blot analysisMonths treatmentMost patientsNSCLC patientsCell cycle arrestTreatment strategiesHigh incidenceMortality rateSurvival rateCancer leadFlow cytometryPatientsResistant cellsKinase inhibitorsAn effective drug sensitizing agent increases gefitinib treatment by down regulating PI3K/Akt/mTOR pathway and up regulating autophagy in non-small cell lung cancer
Zhang J, Qu Z, Yao H, Sun L, Harata-Lee Y, Cui J, Aung TN, Liu X, You R, Wang W, Hai L, Adelson DL, Lin L. An effective drug sensitizing agent increases gefitinib treatment by down regulating PI3K/Akt/mTOR pathway and up regulating autophagy in non-small cell lung cancer. Biomedicine & Pharmacotherapy 2019, 118: 109169. PMID: 31310954, DOI: 10.1016/j.biopha.2019.109169.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Combined Chemotherapy ProtocolsAutophagyCarcinoma, Non-Small-Cell LungCell Line, TumorCell SurvivalDown-RegulationDrug Resistance, NeoplasmDrugs, Chinese HerbalGefitinibGene Expression Regulation, NeoplasticHumansLung NeoplasmsPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktSignal TransductionTOR Serine-Threonine KinasesUp-RegulationConceptsNon-small cell lung cancerCompound Kushen InjectionPI3K/AKT/mTOR pathwayCell lung cancerAKT/mTOR pathwayLung cancerGefitinib treatmentMTOR pathwayFirst-line treatment optionDrug sensitivityPositive EGFR mutationDose-dependent fashionSensitive cell linesMost patientsTreatment optionsEGFR mutationsKushen InjectionTreatment relapseSensitizing agentGefitinibCancerRegulation of autophagyDown regulationTreatment effectsPatients
2017
Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action
Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. International Journal Of Molecular Sciences 2017, 18: 656. PMID: 28304343, PMCID: PMC5372668, DOI: 10.3390/ijms18030656.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsApoptosisDrug Resistance, NeoplasmDrugs, Chinese HerbalHumansConceptsAnti-cancer agentsNatural compound mixturesTherapeutic benefitCancer progressionCancer cellsSynergistic therapeutic benefitsPotential molecular targetsPositive therapeutic benefitsAberrant apoptotic pathwaysClinical efficacyTreatment of cancerAdverse reactionsCancer managementMerit further investigationMultiple specific targetsDrug resistanceCancerGenetic abnormalitiesEffective dosageLimited evidenceMolecular targetsScientific evidenceApoptotic mechanismsFurther investigationProgression
2015
MicroRNA-124 regulates glucocorticoid sensitivity by targeting phosphodiesterase 4B in diffuse large B cell lymphoma
Kim J, Jeong D, Nam J, Aung TN, Gim JA, Park KU, Kim SW. MicroRNA-124 regulates glucocorticoid sensitivity by targeting phosphodiesterase 4B in diffuse large B cell lymphoma. Gene 2015, 558: 173-180. PMID: 25576220, DOI: 10.1016/j.gene.2015.01.001.Peer-Reviewed Original Research