2023
Organ function is preserved despite reorganization of niche architecture in the hair follicle
Wei H, Du S, Parksong J, Pasolli H, Matte-Martone C, Regot S, Gonzalez L, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023, 30: 962-972.e6. PMID: 37419106, PMCID: PMC10362479, DOI: 10.1016/j.stem.2023.06.003.Peer-Reviewed Original ResearchConceptsNiche architectureDermal papilla fibroblastsDifferentiated lineagesHair follicle growthStereotypic architectureMultipotent progenitorsEpithelial progenitorsFunctional importanceNicheStem cellsFibroblast nicheProgenitorsPowerful modelIntravital imagingDermal papillaFibroblastsHair folliclesFollicle growthOrgan functionLineagesDifferentiationCrosstalkHairProliferationCellsInjury prevents Ras mutant cell expansion in mosaic skin
Gallini S, Annusver K, Rahman N, Gonzalez D, Yun S, Matte-Martone C, Xin T, Lathrop E, Suozzi K, Kasper M, Greco V. Injury prevents Ras mutant cell expansion in mosaic skin. Nature 2023, 619: 167-175. PMID: 37344586, PMCID: PMC10322723, DOI: 10.1038/s41586-023-06198-y.Peer-Reviewed Original ResearchConceptsWild-type cellsRas family proteinsCell cycle inhibitor p21Family proteinsOncogenic RasGenetic approachesMosaic tissuesInhibition of EGFRInhibitor p21EGFR ligandsEGFR pathwayCell expansionAberrant growthConstitutive lossDifferential activationParacrine secretionAbsence of injuryCellsCompetitive balanceInjury repairHealthy skinInjurySkinProteinPathwayCell cycle controls long-range calcium signaling in the regenerating epidermis
Moore J, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. Journal Of Cell Biology 2023, 222: e202302095. PMID: 37102999, PMCID: PMC10140546, DOI: 10.1083/jcb.202302095.Peer-Reviewed Original ResearchLive imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo
May D, Yun S, Gonzalez D, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez L, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. ELife 2023, 12: e83444. PMID: 36880644, PMCID: PMC10027315, DOI: 10.7554/elife.83444.Peer-Reviewed Original ResearchConceptsStem cell differentiationCell differentiationStem cell compartmentCompaction changesChromatin compaction statesDynamic transcriptional statesCell compartmentChromatin architectureCell cycle statusChromatin rearrangementNascent RNATranscriptional burstingTranscriptional statesLive imagingTissue contextGene expressionDifferentiating cellsGlobal remodelingIndividual cellsCycle statusStem cellsDifferentiation statusDifferentiationCellsMorphological changes
2022
Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer
Cockburn K, Annusver K, Gonzalez D, Ganesan S, May D, Mesa K, Kawaguchi K, Kasper M, Greco V. Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer. Nature Cell Biology 2022, 24: 1692-1700. PMID: 36357619, PMCID: PMC9729105, DOI: 10.1038/s41556-022-01021-8.Peer-Reviewed Original ResearchConceptsCell cycle exitCycle exitStem cell layerUndifferentiated stem cellsStem cell compartmentDaughter cellsDifferentiated populationsDifferentiation genesTranscriptional changesCell divisionMultiple progenitorsStemness genesCells transitStem cellsCell compartmentCell layerCell poolDifferentiationRegenerative tissueGenesSkin epidermisGradual differentiationMulti-day processesCells
2021
Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis
Park S, Matte-Martone C, Gonzalez DG, Lathrop EA, May DP, Pineda CM, Moore JL, Boucher JD, Marsh E, Schmitter-Sánchez A, Cockburn K, Markova O, Bellaïche Y, Greco V. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nature Cell Biology 2021, 23: 476-484. PMID: 33958758, PMCID: PMC8603572, DOI: 10.1038/s41556-021-00670-5.Peer-Reviewed Original ResearchConceptsDendritic epidermal T cellsLangerhans cellsCell typesEpithelial cellsDifferent cell typesMultiple cell typesLive adult miceGTPase Rac1Skin-resident immune cellsNon-random spatial distributionDistribution of LCContinuous turnoverEpidermal cellsEpidermal T cellsIndividual cellsCellular mechanismsEnvironmental insultsHomeostasisBasal epithelial cellsImmune cellsT cellsAdult miceCellsProper architectureEpidermis
2019
Hair follicle regeneration suppresses Ras-driven oncogenic growth
Pineda CM, Gonzalez DG, Matte-Martone C, Boucher J, Lathrop E, Gallini S, Fons NR, Xin T, Tai K, Marsh E, Nguyen DX, Suozzi KC, Beronja S, Greco V. Hair follicle regeneration suppresses Ras-driven oncogenic growth. Journal Of Cell Biology 2019, 218: 3212-3222. PMID: 31488583, PMCID: PMC6781447, DOI: 10.1083/jcb.201907178.Peer-Reviewed Original ResearchConceptsHair folliclesHras mutationsOncogenic growthHair follicle stem cellsSkin hair folliclesTumor developmentFollicle stem cellsHair follicle regenerationSkin epitheliumSecondary mutationsBenign outgrowthFolliclesStem cellsTissueCertain tissuesFollicle regenerationCellsContinuous tissueWild-type neighborsDistinct mechanismsDifferent outcomesMutationsEnhanced capacityInjuryFlexibility sustains epithelial tissue homeostasis
Tai K, Cockburn K, Greco V. Flexibility sustains epithelial tissue homeostasis. Current Opinion In Cell Biology 2019, 60: 84-91. PMID: 31153058, PMCID: PMC6756930, DOI: 10.1016/j.ceb.2019.04.009.Peer-Reviewed Original ResearchConceptsEpithelial homeostasisEpithelial tissue homeostasisLive-imaging techniquesEpithelial cell interactionsIndividual epithelial cellsOrganism's lifetimeTissue homeostasisCell plasticityCell biologyMolecular mechanismsPathological settingsCell interactionsHomeostasisEpithelial cellsRecent advancesGeneticsBiologyMutationsImportant implicationsEpitheliumMechanismPlasticityCells
2018
Flexible fate determination ensures robust differentiation in the hair follicle
Xin T, Gonzalez D, Rompolas P, Greco V. Flexible fate determination ensures robust differentiation in the hair follicle. Nature Cell Biology 2018, 20: 1361-1369. PMID: 30420661, PMCID: PMC6314017, DOI: 10.1038/s41556-018-0232-y.Peer-Reviewed Original ResearchConceptsSingle-cell levelStem cellsStem cell differentiationGerm stem cellsTissue architectureMultiple cell typesFate determinationDetermination mechanismTissue homeostasisSame stem cellsCommon progenitorDifferentiation outcomesDifferentiation stimuliDifferentiation lineageCell differentiationCell typesNormal differentiationWnt activationHair folliclesUnanticipated flexibilityDifferentiationRobust differentiationProgenitorsCellsUninjured condition
2017
Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice
Park S, Gonzalez DG, Guirao B, Boucher JD, Cockburn K, Marsh ED, Mesa KR, Brown S, Rompolas P, Haberman AM, Bellaïche Y, Greco V. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nature Cell Biology 2017, 19: 155-163. PMID: 28248302, PMCID: PMC5581297, DOI: 10.1038/ncb3472.Peer-Reviewed Original ResearchTissue-scale organizationEpidermal wound repairRegional coexistenceCellular behaviorDifferentiated cellsEpithelial behaviorUndamaged cellsProliferation functionTissue architectureHomeostatic functionsDifferentiation changesLive mammalsLive miceWound repairTissue repairProliferative zoneHomeostatic behaviorCellsSkin repairSpatiotemporal dynamicsMammalsWoundsMiceRepairMigration
2016
Hardwiring Stem Cell Communication through Tissue Structure
Xin T, Greco V, Myung P. Hardwiring Stem Cell Communication through Tissue Structure. Cell 2016, 164: 1212-1225. PMID: 26967287, PMCID: PMC4805424, DOI: 10.1016/j.cell.2016.02.041.Peer-Reviewed Original Research
2015
The Dynamic Duo: Niche/Stem Cell Interdependency
Mesa KR, Rompolas P, Greco V. The Dynamic Duo: Niche/Stem Cell Interdependency. Stem Cell Reports 2015, 4: 961-966. PMID: 26028534, PMCID: PMC4471832, DOI: 10.1016/j.stemcr.2015.05.001.Peer-Reviewed Original ResearchConceptsNormal tissue homeostasisStem cell behaviorStem cell interactionsTissue homeostasisCellular turnoverPathological settingsCell behaviorStem cellsMost tissuesFundamental processesDynamic duoCell interactionsModel systemNew cellsCell productionTissue regenerationCellsTissueLive miceOrganismsHomeostasisTremendous advancesImaging approachNovel imaging approachBasic understandingNiche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool
Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, Gonzalez DG, Blagoev KB, Haberman AM, Greco V. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 2015, 522: 94-97. PMID: 25849774, PMCID: PMC4457634, DOI: 10.1038/nature14306.Peer-Reviewed Original Research
2014
β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche
Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V. β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche. Science 2014, 343: 1353-1356. PMID: 24653033, PMCID: PMC4096864, DOI: 10.1126/science.1248373.Peer-Reviewed Original ResearchConceptsWild-type cellsWnt/β-catenin signalingΒ-catenin signalingΒ-catenin activationMouse hair follicle stem cellsΒ-cateninStem cell nicheHair follicle stem cellsFollicle stem cellsNiche signalsMutant cellsCell divisionCell nicheCoordinated regenerationHair growthWnt ligandsCellular displacementCell behaviorStem cellsHair regenerationTissue growthSignalingCellsTissue regenerationActivation
2013
Stem cell dynamics in the hair follicle niche
Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche. Seminars In Cell And Developmental Biology 2013, 25: 34-42. PMID: 24361866, PMCID: PMC3988239, DOI: 10.1016/j.semcdb.2013.12.005.Peer-Reviewed Original ResearchConceptsHair follicle nicheStem cellsStem cell behaviorMouse genetic modelsNon-cellular componentsNiche microenvironmentMolecular signalsCell behaviorNicheMammalian skinHair folliclesProcess of regenerationCell dynamicsCell populationsGenetic modelsExtracellular materialCurrent understandingCellular compositionTissue regenerationCellsRegenerationNew hairAppendagesMicroenvironmentFolliclesSpatial organization within a niche as a determinant of stem-cell fate
Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 2013, 502: 513-518. PMID: 24097351, PMCID: PMC3895444, DOI: 10.1038/nature12602.Peer-Reviewed Original ResearchConceptsStem cell fateHair follicle nicheStem cell lineagesStem cellsStem cell nicheHair follicle stem cellsStem cell compartmentFollicle stem cellsFate determinationGenetic lineagesDifferentiated fateAdult tissuesNiche locationsMammalian tissuesNicheHair regenerationLineagesSpatial organizationEpithelial cellsFateCellsHair growthRegenerationLive miceTissue
2012
Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration
Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 2012, 487: 496-499. PMID: 22763436, PMCID: PMC3772651, DOI: 10.1038/nature11218.Peer-Reviewed Original Research
2010
Compartmentalized organization: a common and required feature of stem cell niches?
Greco V, Guo S. Compartmentalized organization: a common and required feature of stem cell niches? Development 2010, 137: 1586-1594. PMID: 20430743, PMCID: PMC2860245, DOI: 10.1242/dev.041103.Peer-Reviewed Original ResearchConceptsStem cell nicheCell nicheHair follicle stem cell nicheFollicle stem cell nicheAdult stem cell nichesStem cellsStem cell fieldOrgan growthNicheHair regenerationSlow cyclingRecent findingsCell fieldNew growthTissue regenerationRecent studiesCellsGrowthLong-term growthRegenerationProgenyCompartmentsKey questions
2009
A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration
Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, dela Cruz-Racelis J, Fuchs E. A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell 2009, 4: 155-169. PMID: 19200804, PMCID: PMC2668200, DOI: 10.1016/j.stem.2008.12.009.Peer-Reviewed Original ResearchConceptsBMP inhibitorsHair germHG cellsStem cellsStem cell activationHair regenerationTransit-amplifying cellsBulge stem cellsDermal papillaCyclic boutsTranscriptional profilingElevated FGFPrecocious activityHair folliclesBulge cellsLate telogenWntCell clustersCell activationCellsTwo-step mechanismSmall cell clustersInitial stepRegenerationInhibitors
2003
Defining the Epithelial Stem Cell Niche in Skin
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the Epithelial Stem Cell Niche in Skin. Science 2003, 303: 359-363. PMID: 14671312, PMCID: PMC2405920, DOI: 10.1126/science.1092436.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell DivisionCell SeparationEpidermal CellsEpidermisEpithelial CellsGene Expression ProfilingGene Expression RegulationGreen Fluorescent ProteinsHair FollicleHistonesKeratinocytesLuminescent ProteinsMiceMice, TransgenicMicroscopy, FluorescenceMultipotent Stem CellsOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTranscription, GeneticConceptsStem cell nicheLabel-retaining cellsCell nicheSkin stem cell nichesCell type-specific fashionType-specific fashionEpithelial stem cell nicheTranscriptional profilesSlow-cycling cellsHigh proliferative capacityMessenger RNANicheSurface receptorsProliferative capacityRegenerative cellsCellsRNAProgenyProtein