2024
Defying “IL-11ness” by inhibiting inflammation: Strategy for health and longevity
Kim H, Dixit V. Defying “IL-11ness” by inhibiting inflammation: Strategy for health and longevity. Cell Metabolism 2024, 36: 1911-1913. PMID: 39232279, DOI: 10.1016/j.cmet.2024.08.003.Peer-Reviewed Original Research
2023
Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation
Goldberg E, Letian A, Dlugos T, Leveau C, Dixit V. Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation. Journal Of Biological Chemistry 2023, 299: 103005. PMID: 36775129, PMCID: PMC10025153, DOI: 10.1016/j.jbc.2023.103005.Peer-Reviewed Original ResearchConceptsAge-related inflammationKetone bodiesOrganismal metabolismMyeloid cellsChronic low-grade inflammationKetogenic diet feedingLow-grade inflammationHigh-fat dietAbundant ketone bodyGlucose toleranceNLRP3 inflammasomeDiet feedingGlucose homeostasisMouse modelBody weightInflammationMetabolic checkpointOnly organConditional ablationTerminal enzymeΒ-hydroxybutyrateFunctional targetingMethylglutaryl-CoA lyaseKetogenesisModest effect
2022
Caloric restriction in humans reveals immunometabolic regulators of health span
Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, Ravussin A, Nguyen K, Aladyeva E, Predeus AN, Smith SR, Ravussin E, Galban C, Artyomov MN, Dixit VD. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 2022, 375: 671-677. PMID: 35143297, PMCID: PMC10061495, DOI: 10.1126/science.abg7292.Peer-Reviewed Original ResearchMeSH Keywords1-Alkyl-2-acetylglycerophosphocholine EsteraseAdipose TissueAdultAgingAnimalsCaloric RestrictionDown-RegulationEnergy MetabolismFemaleHumansImmune SystemInflammasomesInflammationLongevityLymphopoiesisMacrophagesMaleMiceMiddle AgedMitochondriaNLR Family, Pyrin Domain-Containing 3 ProteinThermogenesisThymus GlandTranscriptomeConceptsCaloric restrictionAge-related inflammationHealth spanAnti-inflammatory responseNLRP3 inflammasome activationEctopic lipidsMetabolic healthInflammasome activationHealthy humansAdipose tissueImmunometabolic effectsFactor acetyl hydrolaseImmune defenseInflammationAcetyl hydrolaseMitochondrial bioenergeticsHumansLife spanLipoatrophyPLA2G7ThymopoiesisMice
2021
IL-27 signalling promotes adipocyte thermogenesis and energy expenditure
Wang Q, Li D, Cao G, Shi Q, Zhu J, Zhang M, Cheng H, Wen Q, Xu H, Zhu L, Zhang H, Perry RJ, Spadaro O, Yang Y, He S, Chen Y, Wang B, Li G, Liu Z, Yang C, Wu X, Zhou L, Zhou Q, Ju Z, Lu H, Xin Y, Yang X, Wang C, Liu Y, Shulman GI, Dixit VD, Lu L, Yang H, Flavell RA, Yin Z. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021, 600: 314-318. PMID: 34819664, DOI: 10.1038/s41586-021-04127-5.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAnimalsBariatric SurgeryDisease Models, AnimalEnergy MetabolismFemaleHumansInsulin ResistanceInterleukin-27MaleMiceObesityP38 Mitogen-Activated Protein KinasesPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaReceptors, InterleukinSignal TransductionThermogenesisUncoupling Protein 1ConceptsIL-27Beige adipose tissueAdipose tissueSerum IL-27Diet-induced obesityBariatric surgeryMetabolic morbidityImmunological factorsInsulin resistanceObesity showTherapeutic administrationMetabolic disordersMouse modelObesityPromising targetEnergy expenditureSignaling promotesThermogenesisBody temperatureMetabolic programsImportant roleTissueCritical roleImmunotherapyMorbidityDesmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis
Zhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, Li Q, Tellides G, Ordovás-Montanes J, García Milian R, Dixit VD, Ikonen E, Suárez Y, Fernández-Hernando C. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2107682118. PMID: 34782454, PMCID: PMC8617522, DOI: 10.1073/pnas.2107682118.Peer-Reviewed Original ResearchConceptsCholesterol biosynthetic intermediatesBiosynthetic intermediatesDependent inflammasome activationSingle-cell transcriptomicsMitochondrial reactive oxygen species productionFoam cell formationMacrophage foam cellsReactive oxygen species productionHuman coronary artery lesionsConversion of desmosterolTranscriptomic analysisMacrophage cholesterol metabolismPhysiological contextOxygen species productionLiver X receptor ligandsApoptosis-associated speck-like proteinRetinoid X receptor activationX receptor ligandsInflammasome activationAtherosclerotic plaquesSpeck-like proteinCholesterol homeostasisMacrophage inflammasome activationKey moleculesCell formationIL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2
Goldberg EL, Shchukina I, Youm YH, Ryu S, Tsusaka T, Young KC, Camell CD, Dlugos T, Artyomov MN, Dixit VD. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metabolism 2021, 33: 2277-2287.e5. PMID: 34473956, PMCID: PMC9067336, DOI: 10.1016/j.cmet.2021.08.004.Peer-Reviewed Original ResearchConceptsOld miceType 2 innate lymphoid cellsInnate lymphoid cellsTissue-resident cellsCore body temperatureAdoptive transferIL-33ILC2 numbersTissue inflammationAged miceImmunometabolic responsesMetabolic impairmentLymphoid cellsDietary restrictionImmune systemILC2Functional defectsMiceBody temperatureFailureCellsInflammationTranscriptomic analysisInfectionStress responseKetogenic diet restrains aging-induced exacerbation of coronavirus infection in mice
Ryu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife 2021, 10: e66522. PMID: 34151773, PMCID: PMC8245129, DOI: 10.7554/elife.66522.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietCoronavirus infectionAged miceT cellsHigher systemic inflammationInfected aged miceCOVID-19 severityCOVID-19 infectionActivation of ketogenesisMouse hepatitis virus strain A59Systemic inflammationInflammatory damageInfluenza infectionClinical hallmarkNLRP3 inflammasomeImmune surveillanceAdipose tissuePotential treatmentInfectionMiceStrongest predictorLungMortalityAgeAdiponectin preserves metabolic fitness during aging
Li N, Zhao S, Zhang Z, Zhu Y, Gliniak CM, Vishvanath L, An YA, Wang MY, Deng Y, Zhu Q, Shan B, Sherwood A, Onodera T, Oz OK, Gordillo R, Gupta RK, Liu M, Horvath TL, Dixit VD, Scherer PE. Adiponectin preserves metabolic fitness during aging. ELife 2021, 10: e65108. PMID: 33904399, PMCID: PMC8099426, DOI: 10.7554/elife.65108.Peer-Reviewed Original ResearchConceptsAdiponectin null miceSystemic insulin sensitivityInsulin sensitivityNull miceAge-related glucoseRole of adiponectinLipid metabolism disordersHigh-fat dietTransgenic mouse modelAdiponectin levelsTissue inflammationMetabolism disordersClinical studiesMouse modelAdiponectinMice displayMetabolic fitnessOverexpression modelPositive associationMiceMedian lifespanHealthspanDirect effectEssential regulatorAging process
2020
Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue
Goldberg EL, Shchukina I, Asher JL, Sidorov S, Artyomov MN, Dixit VD. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nature Metabolism 2020, 2: 50-61. PMID: 32694683, PMCID: PMC10150608, DOI: 10.1038/s42255-019-0160-6.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietT cellsAdipose tissue inflammationResident immune cellsVisceral adipose tissueHigher fat compositionReduced adipose tissue inflammationCause obesityMetabolic healthTissue inflammationImmune cellsImmunometabolic responsesProlonged exerciseGlucose homeostasisAdipose tissueInflammationKetone bodiesSingle-cell RNA sequencingLow carbohydrateEnergy homeostasisΒ-hydroxybutyrateFat compositionRNA sequencingCells
2019
Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis
Camell CD, Günther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard GB, Ikeno Y, Ruddle NH, Schultze J, Dixit VD. Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metabolism 2019, 30: 1024-1039.e6. PMID: 31735593, PMCID: PMC6944439, DOI: 10.1016/j.cmet.2019.10.006.Peer-Reviewed Original ResearchConceptsAge-associated B cellsFat-associated lymphoid clustersB cellsAdipose tissue leukocytesB-cell depletionB cell accumulationBody temperature maintenanceFALC formationVisceral adiposityCell depletionNLRP3 inflammasomeFemale miceLymphoid clustersMetabolic dysfunctionIL-1Metabolic impairmentIL-1RTissue leukocytesCell accumulationMetabolic homeostasisUnique populationLipolysisCellsTemperature maintenanceAdiposityKetogenic diet activates protective γδ T cell responses against influenza virus infection
Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, Iwasaki A. Ketogenic diet activates protective γδ T cell responses against influenza virus infection. Science Immunology 2019, 4 PMID: 31732517, PMCID: PMC7189564, DOI: 10.1126/sciimmunol.aav2026.Peer-Reviewed Original ResearchConceptsΓδ T cellsKetogenic dietIAV infectionT cellsGlobal health care concernHigh-fat ketogenic dietΓδ T cell responsesInfection-associated morbidityLethal IAV infectionT cell responsesInfluenza virus infectionHealth care concernHigh-carbohydrate dietInfluenza diseaseKD feedingVirus infectionNew therapiesAntiviral resistanceHepatic ketogenesisCare concernsCell responsesInfectionBarrier functionDietMetabolic adaptationAnti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance. The Journal Of Physiology 2019, 597: 3885-3903. PMID: 31206703, PMCID: PMC6876753, DOI: 10.1113/jp277270.Peer-Reviewed Original ResearchConceptsObesity-induced insulin resistanceHigh-fat dietEctopic lipid contentWhite adipose tissue lipolysisInsulin resistanceAdipose tissue lipolysisMale miceInsulin sensitivityFemale miceInsulin-stimulated suppressionWAT inflammationTissue lipolysisRodent studiesTumor necrosis factor αWhole-body insulin sensitivityLipid-induced insulin resistanceMetabolic homeostasisAge-matched menInterleukin-6 concentrationsSkeletal muscleAnti-inflammatory effectsType 2 diabetesInsulin-mediated suppressionSexual dimorphic responseNecrosis factor α
2018
Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity
Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports 2018, 24: 1085-1092.e6. PMID: 30067966, PMCID: PMC6223120, DOI: 10.1016/j.celrep.2018.06.112.Peer-Reviewed Original ResearchConceptsHigh-fat dietInsulin resistanceFood intakeMetabolic inflammationNucleobindin-2M2-like macrophage polarizationHigh-fat diet feedingWeight lossAdipose tissue macrophagesObesity-associated diseasesNesfatin-1Insulin sensitivityDiet feedingMacrophage polarizationNUCB2 proteinMyeloid cellsTissue macrophagesGlobal deletionClassical M1NUCB2NFκB-dependent mannerWeight gainSatietyIntakeAdiposity
2017
Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms
Ferrandino G, Kaspari RR, Spadaro O, Reyna-Neyra A, Perry RJ, Cardone R, Kibbey RG, Shulman GI, Dixit VD, Carrasco N. Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e9172-e9180. PMID: 29073114, PMCID: PMC5664516, DOI: 10.1073/pnas.1707797114.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisAdipose tissue lipolysisHepatic insulin resistanceThyroid hormonesHypothyroid miceImpaired suppressionInsulin resistanceTissue lipolysisInsulin secretionHigh thyroid-stimulating hormone levelsRegulation of THThyroid-stimulating hormone levelsLipid utilizationFatty liver diseaseSerum glucose levelsEndogenous glucose productionLow thyroid hormoneFatty acidsHepatic lipid utilizationLiver diseaseSevere hypothyroidismHormone levelsProfound suppressionGlucose levelsInflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing
Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW, Elsworth J, Rodeheffer MS, Schultze JL, Dixit VD. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017, 550: 119-123. PMID: 28953873, PMCID: PMC5718149, DOI: 10.1038/nature24022.Peer-Reviewed Original ResearchAdipocytesAdipose TissueAgingAnimalsCaspase 1CatecholaminesGene Expression ProfilingGene Expression RegulationGrowth Differentiation Factor 3InflammasomesLipaseLipolysisMacrophagesMiceMonoamine OxidaseMonoamine Oxidase InhibitorsNLR Family, Pyrin Domain-Containing 3 ProteinNorepinephrineSterol EsteraseEnergy Sparing Orexigenic Inflammation of Obesity
Lee A, Dixit VD. Energy Sparing Orexigenic Inflammation of Obesity. Cell Metabolism 2017, 26: 10-12. PMID: 28683278, DOI: 10.1016/j.cmet.2017.06.013.Peer-Reviewed Original ResearchIGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge
Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV, Dixit VD. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge. Cell Reports 2017, 19: 225-234. PMID: 28402847, PMCID: PMC5513500, DOI: 10.1016/j.celrep.2017.03.046.Peer-Reviewed Original ResearchConceptsMacrophage activationM2-like stateHelminth Nippostrongylus brasiliensisNormal insulin sensitivityAdipose tissue macrophagesHigh-fat dietM2-like macrophage activationTyrosine hydroxylase expressionM2-like macrophagesMacrophage activation phenotypeInsulin resistanceInsulin sensitivityHydroxylase expressionImmunometabolic responsesElevated adipositySpecific cytokinesKnockout miceAdipose tissueMacrophage phenotypeMyeloid cellsNippostrongylus brasiliensisTissue macrophagesPhagocytic activityIGF1 receptorCold challengeβ-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares
Goldberg EL, Asher JL, Molony RD, Shaw AC, Zeiss CJ, Wang C, Morozova-Roche LA, Herzog RI, Iwasaki A, Dixit VD. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Reports 2017, 18: 2077-2087. PMID: 28249154, PMCID: PMC5527297, DOI: 10.1016/j.celrep.2017.02.004.Peer-Reviewed Original ResearchConceptsKetogenic dietGouty flaresΒ-hydroxybutyrateMajor risk factorAnti-inflammatory moleculesNLRP3-dependent mannerAlternate metabolic fuelsGout flaresJoint destructionIL-1βIntense painInterleukin-1βNLRP3 inflammasomeRisk factorsInflammatory neutrophilsBacterial infectionsNeutrophilsNLRP3Immune defenseGoutMetabolic fuelsBHBS100A9 fibrilsDietPainCarnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation
Goldberg EL, Dixit VD. Carnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation. Molecular Metabolism 2017, 6: 219-225. PMID: 28180063, PMCID: PMC5279934, DOI: 10.1016/j.molmet.2016.12.008.Peer-Reviewed Original ResearchConceptsNutrient stressFatty acid oxidationAcyl-CoA poolMacrophage energy metabolismAcid oxidationMetabolic stressorsMyeloid lineage cellsStress sensingSwitch mechanismMetabolic homeostasisLineage cellsEnergy metabolismImportant unanswered questionsMuscle cellsHomeostasisCRATHigh-fat diet-induced obesityAcetyltransferase expressionDiet-induced obesityGlucose homeostasisTissue leukocytosisMacrophagesCellsLittermate controlsUnanswered questions
2016
Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence
Spadaro O, Goldberg EL, Camell CD, Youm YH, Kopchick JJ, Nguyen KY, Bartke A, Sun LY, Dixit VD. Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Reports 2016, 14: 1571-1580. PMID: 26876170, PMCID: PMC5992590, DOI: 10.1016/j.celrep.2016.01.044.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAutocrine CommunicationBone Marrow CellsCarrier ProteinsGene Expression RegulationHomeostasisImmunity, InnateImmunologic MemoryInflammasomesInterferon-gammaLongevityMacrophagesMiceMice, KnockoutNLR Family, Pyrin Domain-Containing 3 ProteinReceptor, IGF Type 1Receptors, SomatotropinSignal TransductionSpleenT-LymphocytesConceptsNLRP3 inflammasome activationInflammasome activationImmune senescenceAge-related immune senescenceGrowth hormone receptor deficiencyHigher IFNγ secretionNaive T lymphocytesImmune system homeostasisMyeloid lineage cellsEffector memoryIFNγ secretionInflammasome inhibitionEffector cellsChronic inflammationReceptor deficiencyAdvanced ageAge-related activationSystemic activationT lymphocytesGrowth hormone receptorNLRP3 ligandsInnate immuneSomatotropic axisSystem homeostasisNLRP3