2023
A bedside to bench study of anti-PD-1, anti-CD40, and anti-CSF1R indicates that more is not necessarily better
Djureinovic D, Weiss S, Krykbaeva I, Qu R, Vathiotis I, Moutafi M, Zhang L, Perdigoto A, Wei W, Anderson G, Damsky W, Hurwitz M, Johnson B, Schoenfeld D, Mahajan A, Hsu F, Miller-Jensen K, Kluger Y, Sznol M, Kaech S, Bosenberg M, Jilaveanu L, Kluger H. A bedside to bench study of anti-PD-1, anti-CD40, and anti-CSF1R indicates that more is not necessarily better. Molecular Cancer 2023, 22: 182. PMID: 37964379, PMCID: PMC10644655, DOI: 10.1186/s12943-023-01884-x.Peer-Reviewed Original ResearchConceptsStable diseasePartial responseMacrophage populationsThree-drug regimenUnconfirmed partial responsePhase I trialLimited treatment optionsMonocyte/macrophage populationNon-classical monocytesMurine melanoma modelTreatment-related changesResultsThirteen patientsWorse survivalI trialInflammatory tumorPatient populationTreatment optionsImmune cellsDisease progressionMurine studiesPreclinical modelsResistant melanomaAntigen presentationMurine modelCyTOF analysisCombinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance.
Krykbaeva I, Bridges K, Damsky W, Pizzurro G, Alexander A, McGeary M, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss S, Olino K, Kaech S, Kluger H, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunology Research 2023, 11: 1332-1350. PMID: 37478171, DOI: 10.1158/2326-6066.cir-22-0699.Peer-Reviewed Original ResearchConceptsPD-1 resistanceDendritic cellsTumor regressionAnti-PD-1 resistanceActivates Dendritic CellsCytokine secretion profilingSystemic cytokine profileTriple therapy combinationInnate immune activationAdaptive immune responsesComplete tumor regressionMajority of miceSignificant clinical challengeMouse melanoma modelT cell activationAgonistic CD40Checkpoint inhibitorsDC subsetsTriple therapyCytokine profileImmune activationCombinatorial immunotherapyTherapy combinationsT cellsClinical challengePD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens
Damo M, Hornick N, Venkat A, William I, Clulo K, Venkatesan S, He J, Fagerberg E, Loza J, Kwok D, Tal A, Buck J, Cui C, Singh J, Damsky W, Leventhal J, Krishnaswamy S, Joshi N. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens. Nature 2023, 619: 151-159. PMID: 37344588, PMCID: PMC10989189, DOI: 10.1038/s41586-023-06217-y.Peer-Reviewed Original ResearchConceptsEffector CD8 T cellsCD8 T cellsAntigen-specific effector CD8 T cellsAntigen-specific CD8 T cellsAntigen-expressing cellsT cell tolerancePD-1T cellsAdverse eventsCell toleranceCD8 T cell toleranceImmune-related adverse eventsPeripheral T cell repertoirePeripheral T cell toleranceNon-lesional skinT cell repertoireT-cell antigensPeripheral toleranceCheckpoint receptorsSkin biopsiesLocal infiltrationLocal pathologyCell repertoireMouse modelSkin tolerance
2021
KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, Bosenberg MW, Yan Q. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598: 682-687. PMID: 34671158, PMCID: PMC8555464, DOI: 10.1038/s41586-021-03994-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorDNA-Binding ProteinsEpigenesis, GeneticGene SilencingHeterochromatinHistone-Lysine N-MethyltransferaseHumansInterferon Type IJumonji Domain-Containing Histone DemethylasesMaleMelanomaMiceMice, Inbred C57BLMice, KnockoutNuclear ProteinsRepressor ProteinsRetroelementsTumor EscapeConceptsImmune checkpoint blockadeImmune evasionCheckpoint blockadeImmune responseAnti-tumor immune responseRobust adaptive immune responseTumor immune evasionAnti-tumor immunityAdaptive immune responsesType I interferon responseDNA-sensing pathwayMouse melanoma modelImmunotherapy resistanceMost patientsCurrent immunotherapiesTumor immunogenicityImmune memoryMelanoma modelCytosolic RNA sensingRole of KDM5BConsiderable efficacyInterferon responseImmunotherapyEpigenetic therapyBlockade
2020
IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy
Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP, Rosen CE, Fischer S, Jackson R, Flavell RA, Wang J, Sanmamed MF, Bosenberg MW, Ring AM. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 2020, 583: 609-614. PMID: 32581358, PMCID: PMC7381364, DOI: 10.1038/s41586-020-2422-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesDisease Models, AnimalFemaleHepatocyte Nuclear Factor 1-alphaHistocompatibility Antigens Class IHumansImmunotherapyIntercellular Signaling Peptides and ProteinsInterleukin-18Kaplan-Meier EstimateKiller Cells, NaturalLymphocytes, Tumor-InfiltratingMaleMiceNeoplasmsReceptors, Interleukin-18Stem CellsTumor MicroenvironmentConceptsIL-18IL-18BPT cellsAnti-PD-1 resistant tumorsWild-type IL-18Potent anti-tumor effectsMajor histocompatibility complex class IIL-18 pathwayIL-18 therapyInterleukin-18 pathwayMajor therapeutic barrierStem-like TCF1Anti-tumor immunityTumor-infiltrating lymphocytesNatural killer cellsRecombinant IL-18Histocompatibility complex class IAnti-tumor effectsComplex class IAnti-tumor activityMouse tumor modelsModern immunotherapyPrecursor CD8Effector CD8Exhausted CD8JAK inhibition prevents bleomycin-induced fibrosis in mice and is effective in morphea patients
Damsky W, Patel D, Garelli CJ, Garg M, Wang A, Dresser K, Deng A, Harris JE, Richmond J, King B. JAK inhibition prevents bleomycin-induced fibrosis in mice and is effective in morphea patients. Journal Of Investigative Dermatology 2020, 140: 1446-1449.e4. PMID: 31954727, DOI: 10.1016/j.jid.2019.12.019.Peer-Reviewed Original Research
2016
The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations
Meeth K, Wang JX, Micevic G, Damsky W, Bosenberg MW. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell & Melanoma Research 2016, 29: 590-597. PMID: 27287723, PMCID: PMC5331933, DOI: 10.1111/pcmr.12498.Peer-Reviewed Original ResearchConceptsMouse melanoma cell lineMelanoma cell linesCell linesMouse cancer cell linesVariety of cancersCancer cell linesMouse melanoma linesImmune therapyTumor immunologyCancer immunologyHost miceMouse modelCancer modelMelanoma linesDriver mutationsGenetic alterationsCancer biologyImmunologyTherapyCancerMice
2015
mTORC1 Activation Blocks Braf V600E -Induced Growth Arrest but Is Insufficient for Melanoma Formation
Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, Erdelyi I, Platt JT, Huang L, Theodosakis N, Zaidi MR, Tighe S, Davies MA, Dankort D, McMahon M, Merlino G, Bardeesy N, Bosenberg M. mTORC1 Activation Blocks Braf V600E -Induced Growth Arrest but Is Insufficient for Melanoma Formation. Cancer Cell 2015, 27: 41-56. PMID: 25584893, PMCID: PMC4295062, DOI: 10.1016/j.ccell.2014.11.014.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsCell Line, TumorCell ProliferationCyclin-Dependent Kinase Inhibitor p16HumansMechanistic Target of Rapamycin Complex 1Mechanistic Target of Rapamycin Complex 2MelanocytesMelanoma, ExperimentalMiceMicroRNAsMolecular Sequence DataMultiprotein ComplexesMutationNevusProtein Serine-Threonine KinasesProto-Oncogene Proteins B-rafSignal TransductionSkin NeoplasmsTOR Serine-Threonine KinasesConceptsMelanoma formationGrowth arrestStable growth arrestMTORC2/AktSTK11 lossCDKN2A lossAkt activationIGF1R signalingMice resultsActivationArrestMTORC2Nevus developmentMTORC1/2SignalingAktMelanocytic nevus developmentMelanomagenesisMTORProgressionCDKN2AMelanocytesInactivationUpregulationComplete progression
2011
β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas
Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M. β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell 2011, 20: 741-754. PMID: 22172720, PMCID: PMC3241928, DOI: 10.1016/j.ccr.2011.10.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationBenzamidesBeta CateninCell Transformation, NeoplasticColorectal NeoplasmsEnzyme ActivationGene Knockdown TechniquesHumansImatinib MesylateKaplan-Meier EstimateLung NeoplasmsLymphatic MetastasisMelanocytesMelanoma, ExperimentalMiceMice, 129 StrainMice, Inbred C57BLMice, TransgenicPhosphorylationPiperazinesProtein StabilityProto-Oncogene Proteins B-rafProto-Oncogene Proteins c-aktPTEN PhosphohydrolasePyrimidinesSignal TransductionSkin NeoplasmsSplenic NeoplasmsTranscription, GeneticTumor Cells, CulturedConceptsΒ-catenin levelsPI3K/AktLymph nodesMetastatic tumorsFrequent metastasisTumor differentiationMalignant melanomaMAPK/ERKMelanoma metastasesMouse modelControl metastasisHuman melanomaMelanomaMetastasisΒ-catenin stabilizationPTEN lossCentral mediatorMetastasis regulatorsΒ-cateninSpecific changesFunctional implicationsWntLung