2020
Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation
Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, Ha Y, Sessa WC. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 20794-20802. PMID: 32817466, PMCID: PMC7456142, DOI: 10.1073/pnas.2008381117.Peer-Reviewed Original ResearchConceptsActive site tunnelProtein glycosylationAtomic resolution structuresGlycosyl carrier lipidsΑ3 helixEnzyme active sitePTase activityResolution structureActive siteEndoplasmic reticulumHomodimeric formCarrier lipidRate-limiting stepGlycosylationCrystal structureDHDDSStructural elucidationPTaseIsoprene chainPrenyltransferaseUnique insightsComplexesUnfavorable stateNgBRHomodimeric
2016
Mechanism of substrate specificity of phosphatidylinositol phosphate kinases
Muftuoglu Y, Xue Y, Gao X, Wu D, Ha Y. Mechanism of substrate specificity of phosphatidylinositol phosphate kinases. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 8711-8716. PMID: 27439870, PMCID: PMC4978281, DOI: 10.1073/pnas.1522112113.Peer-Reviewed Original ResearchConceptsPhosphatidylinositol phosphate kinaseKinase familySubstrate specificityPhosphate kinasePhosphatidylinositol phosphate kinase (PIPK) familyZebrafish type IMembrane trafficking processesExquisite substrate specificityType III kinaseEukaryotic cellsInositol ringPhosphorylation resultsSubstrate recognitionTrafficking processesSpecificity loopPhosphatidylinositol derivativesBiological functionsPhosphatidylinositol 4PhosphatidylinositolKinaseStructural motifsType IBisphosphateLoop functionsComplex patterns
2015
Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled
Hu J, Yuan Q, Kang X, Qin Y, Li L, Ha Y, Wu D. Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nature Communications 2015, 6: 8205. PMID: 26365782, PMCID: PMC4570271, DOI: 10.1038/ncomms9205.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBinding SitesCalorimetryCatalytic DomainCircular DichroismCrystallizationCrystallography, X-RayDimerizationDishevelled ProteinsHEK293 CellsHumansPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositol PhosphatesPhosphoproteinsPhosphorylationPhosphotransferases (Alcohol Group Acceptor)Protein Structure, TertiaryZebrafishConceptsSubstrate-binding siteLipid kinasesDIX domainCellular functionsCatalytic domainPhosphate kinaseÅ resolutionMutagenesis studiesRegulatory mechanismsMolecular mechanismsCatalytic activityPIP5K1AHead groupsCrystal structureSide dimerKinaseWntStructural informationRegulationDimerizationMoleculesResolution of structuresImportant rolePhosphatidylinositolType I
2011
Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization
Xue Y, Lee S, Ha Y. Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 16229-16234. PMID: 21930949, PMCID: PMC3182750, DOI: 10.1073/pnas.1103407108.Peer-Reviewed Original ResearchMeSH KeywordsAmyloid beta-Protein PrecursorCrystallography, X-RayDimerizationHeparinModels, MolecularProtein BindingProtein ConformationThe crystal structure of GXGD membrane protease FlaK
Hu J, Xue Y, Lee S, Ha Y. The crystal structure of GXGD membrane protease FlaK. Nature 2011, 475: 528-531. PMID: 21765428, PMCID: PMC3894692, DOI: 10.1038/nature10218.Peer-Reviewed Original ResearchMeSH KeywordsArchaeal ProteinsCrystallography, X-RayMembrane ProteinsMethanococcusModels, MolecularPeptide HydrolasesPresenilin-1Protein Structure, TertiaryConceptsFamily of proteasesFirst crystal structureIntramembrane proteasesPrepilin peptidaseMethanococcus maripaludisMembrane proteasePreflagellin peptidaseFamilial Alzheimer's diseaseVirulence factorsAspartyl proteaseBiochemical analysisProteasePathogenic bacteriaStructural knowledgePresenilinPeptidaseCrystal structureSoluble counterpartActive siteFamilyRational designAspartylBacteriaAlzheimer's diseaseFundamental differences
2007
Open-cap conformation of intramembrane protease GlpG
Wang Y, Ha Y. Open-cap conformation of intramembrane protease GlpG. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 2098-2102. PMID: 17277078, PMCID: PMC1892946, DOI: 10.1073/pnas.0611080104.Peer-Reviewed Original ResearchConceptsIntramembrane proteasesEscherichia coli GlpGHydrophilic active sitePutative oxyanion holeActive siteMain-chain amidesPrevious crystallographic analysisRhomboid familyConformational plasticitySer-201Substrate bindingLoop L5GlpGClosed conformationSide portalsOpen conformationHydrophobic side chainsLoop movementOxyanion holeSide chainsPeptide bond hydrolysisLipid bilayersBond hydrolysisProteaseConformation
2006
Crystal structure of a rhomboid family intramembrane protease
Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444: 179-180. PMID: 17051161, DOI: 10.1038/nature05255.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsBinding SitesCatalysisCell MembraneCrystallizationCrystallography, X-RayDNA-Binding ProteinsEndopeptidasesEscherichia coliEscherichia coli ProteinsHydrophobic and Hydrophilic InteractionsMembrane ProteinsModels, MolecularProtein Structure, TertiarySubstrate SpecificityWaterConceptsMembrane proteinsEscherichia coli GlpGÅ resolution crystal structureSite-2 proteaseIntegral membrane proteinsPutative active siteResolution crystal structureHydrophilic active siteRhomboid proteasesIntramembrane proteasesIntramembrane proteolysisTransmembrane segmentsTransmembrane domainActive siteProtease familyMembrane bilayerProtein interiorCore domainGating mechanismGlpGΓ-secretaseHydrophobic environmentCrystal structureProteaseLoop structure
2004
H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes
Russell R, Gamblin S, Haire L, Stevens D, Xiao B, Ha Y, Skehel J. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 2004, 325: 287-296. PMID: 15246268, DOI: 10.1016/j.virol.2004.04.040.Peer-Reviewed Original ResearchThe Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin
Gamblin S, Haire L, Russell R, Stevens D, Xiao B, Ha Y, Vasisht N, Steinhauer D, Daniels R, Elliot A, Wiley D, Skehel J. The Structure and Receptor Binding Properties of the 1918 Influenza Hemagglutinin. Science 2004, 303: 1838-1842. PMID: 14764886, DOI: 10.1126/science.1093155.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBinding SitesBirdsCrystallography, X-RayHemagglutinin Glycoproteins, Influenza VirusHistory, 20th CenturyHumansHydrogen BondingInfluenza A virusInfluenza, HumanMembrane GlycoproteinsModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryReceptors, VirusSequence AlignmentSialic AcidsSpecies SpecificitySwine
2001
X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs
Ha Y, Stevens D, Skehel J, Wiley D. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 11181-11186. PMID: 11562490, PMCID: PMC58807, DOI: 10.1073/pnas.201401198.Peer-Reviewed Original Research