2021
Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis
Zhang X, McDonald JG, Aryal B, Canfrán-Duque A, Goldberg EL, Araldi E, Ding W, Fan Y, Thompson BM, Singh AK, Li Q, Tellides G, Ordovás-Montanes J, García Milian R, Dixit VD, Ikonen E, Suárez Y, Fernández-Hernando C. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2107682118. PMID: 34782454, PMCID: PMC8617522, DOI: 10.1073/pnas.2107682118.Peer-Reviewed Original ResearchConceptsCholesterol biosynthetic intermediatesBiosynthetic intermediatesDependent inflammasome activationSingle-cell transcriptomicsMitochondrial reactive oxygen species productionFoam cell formationMacrophage foam cellsReactive oxygen species productionHuman coronary artery lesionsConversion of desmosterolTranscriptomic analysisMacrophage cholesterol metabolismPhysiological contextOxygen species productionLiver X receptor ligandsApoptosis-associated speck-like proteinRetinoid X receptor activationX receptor ligandsInflammasome activationAtherosclerotic plaquesSpeck-like proteinCholesterol homeostasisMacrophage inflammasome activationKey moleculesCell formation
2019
Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development
Price NL, Rotllan N, Zhang X, Canfrán-Duque A, Nottoli T, Suarez Y, Fernández-Hernando C. Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circulation Research 2019, 124: 874-880. PMID: 30707082, PMCID: PMC6417928, DOI: 10.1161/circresaha.118.314415.Peer-Reviewed Original ResearchConceptsMacrophage cholesterol effluxAtherosclerotic plaque formationCholesterol effluxMiR-33Proatherogenic effectsABCA1 expressionBone marrowDeficient animalsPlaque formationMiR-33-deficient miceHigh-fat diet feedingHepatic ABCA1 expressionAtherosclerotic plaque burdenFat diet feedingDevelopment of obesityNovel mouse modelAtherosclerotic plaque developmentFoam cell formationPlaque burdenDeficient miceDiet feedingMetabolic dysfunctionSpecific disruptionMouse modelKnockout mice
2017
Macrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis
Canfrán‐Duque A, Rotllan N, Zhang X, Fernández‐Fuertes M, Ramírez‐Hidalgo C, Araldi E, Daimiel L, Busto R, Fernández‐Hernando C, Suárez Y. Macrophage deficiency of miR‐21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine 2017, 9: 1244-1262. PMID: 28674080, PMCID: PMC5582411, DOI: 10.15252/emmm.201607492.Peer-Reviewed Original ResearchConceptsER stress-induced apoptosisPost-translational degradationFoam cell formationMiR-21MiR-21 target genesTarget genesJNK signalingPlaque necrosisAbundant miRNAVascular inflammationAccumulation of lipidsHematopoietic cellsMacrophage apoptosisCell formationAberrant expressionMacrophage deficiencyApoptosisCholesterol effluxProgression of atherosclerosisChronic inflammatory diseasePathophysiological processesInflammatory cellsExpressionInflammatory diseasesCardiovascular disease
2016
ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression
Aryal B, Rotllan N, Araldi E, Ramírez CM, He S, Chousterman BG, Fenn AM, Wanschel A, Madrigal-Matute J, Warrier N, Martín-Ventura JL, Swirski FK, Suárez Y, Fernández-Hernando C. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications 2016, 7: 12313. PMID: 27460411, PMCID: PMC4974469, DOI: 10.1038/ncomms12313.Peer-Reviewed Original ResearchMeSH KeywordsAngiopoietin-Like Protein 4AnimalsApoptosisAtherosclerosisBone Marrow TransplantationCell ProliferationCell SurvivalDisease ProgressionFoam CellsHematopoietic Stem CellsHumansInflammationLeukocytosisMacrophagesMaleMiceMice, Inbred C57BLModels, BiologicalMonocytesMyeloid Progenitor CellsPlaque, AtheroscleroticConceptsFoam cell formationMyeloid progenitor cell expansionANGPTL4 deficiencyCell formationMacrophage gene expressionLipid raft contentMyeloid progenitor populationsProgenitor cell expansionUpregulated genesProgenitor populationsGene expressionHaematopoietic cellsCell surfaceMacrophage apoptosisCell expansionCells resultsProtein 4Lipid accumulationCD36 expressionLike protein 4ExpressionProfound effectMacrophagesGenesLarger atherosclerotic plaques
2015
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernandez-Hernando C, Suarez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2015, 13: 291-304. PMID: 26156264, DOI: 10.2174/15701611113119990012.Peer-Reviewed Original ResearchConceptsPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sites
2013
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernández-Hernando C, Suárez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2013 PMID: 23713860, PMCID: PMC3883893.Peer-Reviewed Original ResearchPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sitesControl of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144
Ramírez CM, Rotllan N, Vlassov AV, Dávalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, Wanschel A, Zavadil J, Castrillo A, Kim J, Suárez Y, Fernández-Hernando C. Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144. Circulation Research 2013, 112: 1592-1601. PMID: 23519695, PMCID: PMC3929583, DOI: 10.1161/circresaha.112.300626.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnticholesteremic AgentsApolipoprotein A-IATP Binding Cassette Transporter 1ATP-Binding Cassette TransportersChlorocebus aethiopsCholesterol, HDLCOS CellsDiet, High-FatGene Expression ProfilingHep G2 CellsHepatocytesHomeostasisHumansHydrocarbons, FluorinatedLiver X ReceptorsMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutMicroRNAsOligonucleotide Array Sequence AnalysisOligonucleotidesOrphan Nuclear ReceptorsSulfonamidesConceptsAdenosine triphosphate-binding cassette transporter A1Liver X nuclear receptorCholesterol metabolismABCA1 expressionMiR-144HDL levelsLXR agonistsCholesterol effluxLXR ligandsHigh-density lipoprotein levelsPlasma high-density lipoprotein levelsTriphosphate-binding cassette transporter A1Potential therapeutical interventionsAtherosclerotic vascular diseaseMacrophage cholesterol effluxCassette transporter A1Cassette transporter G1MiR-144 expressionPrimary mouse peritoneal macrophagesHigh-density lipoprotein biogenesisEfflux of cholesterolFoam cell formationAdenosine triphosphate-binding cassette transportersModulation of miRNAsMiRNA expression signatures
1998
Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL
Calvo D, Gómez-Coronado D, Suárez Y, Lasunción M, Vega M. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. Journal Of Lipid Research 1998, 39: 777-788. PMID: 9555943, DOI: 10.1016/s0022-2275(20)32566-9.Peer-Reviewed Original ResearchConceptsHigh-affinity receptorHuman CD36Lipoprotein HDLAffinity receptorPathogenesis of atherosclerosisLow-density lipoproteinFoam cell formationBinding of lipoproteinsFatty acid metabolismSR-BIActive fatty acid metabolismDensity lipoproteinModified lipoproteinsScavenger receptorsLipid metabolismCD36CLA-1Monoclonal antibodiesLDLLipoproteinHDLAcid metabolismReceptorsVLDLNative lipoproteins