2021
MicroRNA regulation of cholesterol metabolism
Citrin KM, Fernández‐Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Annals Of The New York Academy Of Sciences 2021, 1495: 55-77. PMID: 33521946, PMCID: PMC8938903, DOI: 10.1111/nyas.14566.Peer-Reviewed Original ResearchConceptsDifferent cell typesCell typesMultiple mRNA targetsCholesterol homeostasisSmall noncoding RNAsMicroRNA activityCholesterol-laden cellsMicroRNA regulationCholesterol metabolismMRNA targetsNoncoding RNAsPosttranscriptional levelGene expressionSpecialized functionsMicroRNAsCurrent knowledgeTarget interactionsHomeostasisMetabolismPathwayExpressionMultiple stagesRNARegulationDistinctive effects
2018
Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis
Aryal B, Suárez Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascular Pharmacology 2018, 114: 64-75. PMID: 29551552, PMCID: PMC6177333, DOI: 10.1016/j.vph.2018.03.001.Peer-Reviewed Original ResearchConceptsNon-coding RNAsNon-coding RNA regulationSmall non-coding RNAsMultiple cell functionsRNA regulationMacrophage functionRNA moleculesGene expressionPotential regulatorKey playersVascular biologyPathogenesis of atherosclerosisCell functionSpecific roleLncRNAsRegulationRNAMechanism of actionEndothelial cellsInitial eventVascular integrityRecruitment of monocytesMicroRNAsDevelopment of atherosclerosisBiology
2016
MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases
Araldi E, Suárez Y. MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases. Biochimica Et Biophysica Acta 2016, 1861: 2094-2103. PMID: 26825686, PMCID: PMC5039046, DOI: 10.1016/j.bbalip.2016.01.013.Peer-Reviewed Original ResearchConceptsSmall non-coding RNAsLipid/energy metabolismCarlos Fernández-HernandoRegulation of ECNon-coding RNAsRole of miRNAsEndothelial cellsYajaira SuárezTissue homeostasisCell deathEndothelial cell functionEnvironmental stimuliEnergy metabolismMicroRNAsCell proliferationImportant functionsPotential therapeutic applicationsCell functionMiRNAsDifferent cardiometabolic diseasesMetabolic imbalanceEC dysfunctionTherapeutic applicationsPresent reviewRelated diseases
2015
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernandez-Hernando C, Suarez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2015, 13: 291-304. PMID: 26156264, DOI: 10.2174/15701611113119990012.Peer-Reviewed Original ResearchConceptsPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sites
2013
Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease.
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernández-Hernando C, Suárez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology 2013 PMID: 23713860, PMCID: PMC3883893.Peer-Reviewed Original ResearchPost-transcriptional levelMonocyte-derived phagocytesFoam cell formationGene regulatorsCell adhesion moleculeModulating microRNAsVascular smooth muscle cellsCell differentiationArterial tree resultsVascular diseaseCell formationMicroRNAsSmooth muscle cellsCap formationVascular cellsFibrous cap formationPotential therapeutic applicationsUnstable fibrous capUnstable coronary syndromesAtherosclerotic vascular diseaseTree resultsMuscle cellsChronic inflammatory diseaseProgression of atherosclerosisLesion-prone sitesMicroRNAs as pharmacological targets in endothelial cell function and dysfunction
Chamorro-Jorganes A, Araldi E, Suárez Y. MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacological Research 2013, 75: 15-27. PMID: 23603154, PMCID: PMC3752325, DOI: 10.1016/j.phrs.2013.04.002.Peer-Reviewed Original ResearchConceptsEndothelial cell functionShort non-coding RNAsCell functionPost-transcriptional levelNon-coding RNAsEndothelial-specific microRNAsGene expressionMorphogenic capacityCritical regulatorNormal endothelial cell functionMicroRNAsCell dysfunctionEndothelial cell dysfunctionPathophysiological conditionsLatest insightsParacrine mannerPharmacological targetsEndothelial cellsTherapeutic potentialBarrier functionTraffickingRNALeukocyte traffickingRegulatorTargetMicroRNAs in Metabolic Disease
Fernández-Hernando C, Ramírez CM, Goedeke L, Suárez Y. MicroRNAs in Metabolic Disease. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33: 178-185. PMID: 23325474, PMCID: PMC3740757, DOI: 10.1161/atvbaha.112.300144.BooksConceptsContribution of miRNAsCellular cholesterol exportMiR-33Fatty acid degradationSREBP genesIntronic miRNAMetabolic diseasesFatty acid synthesisHost genesCholesterol exportSpecific miRNAsPhysiological processesLipid homeostasisMiRNAsAcid synthesisAcid degradationCardiometabolic diseasesGenesMicroRNAsGlucose homeostasisCritical roleGlucose metabolismLipoprotein secretionRecent findingsMetabolic control
2011
The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annual Review Of Nutrition 2011, 31: 49-63. PMID: 21548778, PMCID: PMC3612434, DOI: 10.1146/annurev-nutr-081810-160756.Peer-Reviewed Original ResearchConceptsGene expressionSterol response element-binding proteinMiR-33Fatty acid β-oxidationElement-binding proteinFatty acid homeostasisResponse element-binding proteinRole of microRNAsCholesterol effluxIntronic miRNALipid metabolismRNA bindsPosttranscriptional controlUntranslated regionAbundant miRNABiological processesElegant mechanismMiR-122Lipid homeostasisΒ-oxidationAcid homeostasisCell phenotypeMiRNAsHepatic lipid metabolismMicroRNAs
2010
microRNAs and cholesterol metabolism
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. microRNAs and cholesterol metabolism. Trends In Endocrinology And Metabolism 2010, 21: 699-706. PMID: 20880716, PMCID: PMC2991595, DOI: 10.1016/j.tem.2010.08.008.Peer-Reviewed Original ResearchConceptsPotent post-transcriptional regulatorsPost-transcriptional regulatorsMiR-33Non-coding RNALipid metabolism genesCholesterol metabolismTranscriptional regulationEpigenetic regulationFatty acid metabolismABC transportersMetabolism genesHDL biogenesisCellular levelCholesterol homeostasisMicroRNAsAcid metabolismImportant roleMiR-370Cholesterol effluxMetabolismMiR-122RegulationNew avenuesBiogenesisGenesMicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function
Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC. MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function. Arteriosclerosis Thrombosis And Vascular Biology 2010, 30: 1118-1126. PMID: 20378849, PMCID: PMC2880481, DOI: 10.1161/atvbaha.109.200873.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsAortaCell DifferentiationCell ProliferationCells, CulturedDEAD-box RNA HelicasesEmbryo LossEndoribonucleasesGene Expression Regulation, DevelopmentalGenotypeGestational AgeHemorrhageIntegrasesLiver DiseasesMaleMiceMice, KnockoutMicrofilament ProteinsMicroRNAsMuscle DevelopmentMuscle ProteinsMuscle, Smooth, VascularNuclear ProteinsPhenotypeRibonuclease IIIStress FibersTrans-ActivatorsTranscriptional ActivationTransfectionUmbilical ArteriesVasoconstrictionVasodilationConceptsLate embryonic lethalityFundamental cellular processesContractile differentiationContractile protein markersDicer-dependent miRNAsActin stress fibersDeletion of DicerRole of miRNAsDicer resultsOverexpression of microRNAEmbryonic lethalityMiRNA synthesisCellular processesRate-limiting enzymeStress fibersVascular developmentMuscle growthCell typesCellular proliferationMiRNAsVascular smooth muscle growthVascular smooth muscle proliferationMicroRNAsProtein markersDicer
2009
MicroRNAs As Novel Regulators of Angiogenesis
Suárez Y, Sessa WC. MicroRNAs As Novel Regulators of Angiogenesis. Circulation Research 2009, 104: 442-454. PMID: 19246688, PMCID: PMC2760389, DOI: 10.1161/circresaha.108.191270.Peer-Reviewed Original ResearchConceptsInvolvement of miRNAsShort noncoding RNAsPosttranscriptional regulationNoncoding RNAsNovel regulatorKey regulatorNegative regulatorGene expressionAspects of developmentNew blood vesselsRegulatorVascular biologyCurrent experimental evidencePotential therapeutic applicationsMiRNAsMicroRNAsAngiogenic processEndothelial cellsRegulationAbnormal angiogenesisTherapeutic applicationsAngiogenesisRNABiologyHomeostasis
2008
Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis
Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 14082-14087. PMID: 18779589, PMCID: PMC2544582, DOI: 10.1073/pnas.0804597105.Peer-Reviewed Original ResearchConceptsEndothelial miRNAsPostnatal angiogenesisMiR-17Posttranscriptional gene regulationLoss of DicerGeneration of miRNAsExpression of miRNAsCluster miR-17Cell-specific inactivationGene regulationAngiogenic responseEndothelial microRNAsInduced expressionMiRNAsAspects of developmentEndothelial cell proliferationVariety of stimuliCell proliferationDicerThrombospondin-1Exogenous VEGFMicroRNAsExpressionEndothelial cellsRegulation