2024
Immune infiltration at the primary tumor is associated with clinical outcome of patients with extranodal extension of lymph node metastasis in oral cancer
Michikawa C, Gleber-Netto F, Pickering C, Rao X, Wang J, Sikora A, Myers J, Frederick M. Immune infiltration at the primary tumor is associated with clinical outcome of patients with extranodal extension of lymph node metastasis in oral cancer. Oral Oncology 2024, 153: 106729. PMID: 38663156, DOI: 10.1016/j.oraloncology.2024.106729.Peer-Reviewed Original ResearchConceptsOral cavity squamous cell carcinomaAssociated with clinical outcomesExtranodal extensionLymph node metastasisImmune infiltrationImmune infiltration statusOverall survivalPrimary tumorNode metastasisOral cancerInfiltration statusClinical outcomes of OSCC patientsExtension of lymph node metastasesAssociated with clinical outcomes of patientsAssociated with OS rateLocally advanced oral cancerClinical outcomes of patientsOutcome of OSCC patientsAssociated with poor overall survivalImmune infiltration of tumorsLow immune infiltrationNode negative tumorsAdvanced oral cancerHuman papillomavirus-negativeInfiltration of tumors
2022
Combined TRIP13 and Aurora Kinase Inhibition Induces Apoptosis in Human Papillomavirus-Driven Cancers.
Ghosh S, Mazumdar T, Xu W, Powell RT, Stephan C, Shen L, Shah PA, Pickering CR, Myers JN, Wang J, Frederick MJ, Johnson FM. Combined TRIP13 and Aurora Kinase Inhibition Induces Apoptosis in Human Papillomavirus-Driven Cancers. Clinical Cancer Research 2022, 28: 4479-4493. PMID: 35972731, PMCID: PMC9588713, DOI: 10.1158/1078-0432.ccr-22-1627.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAlphapapillomavirusApoptosisATPases Associated with Diverse Cellular ActivitiesAurora KinasesCell Cycle ProteinsFemaleHumansOncogene Proteins, ViralPapillomaviridaePapillomavirus E7 ProteinsPapillomavirus InfectionsRetinoblastoma ProteinUterine Cervical NeoplasmsConceptsHPV-positive cancer cellsInhibition-induced apoptosisAurora kinase inhibitorsAurora kinase inhibitionCancer cellsKinase inhibitionAbsence of RbViral oncoprotein E7Kinase inhibitorsMitotic exitAAA-ATPaseProtein degradationRb functionMechanisms of sensitivityPathway componentsTRIP13MAD2L1Extensive apoptosisCancer cell linesSquamous cancer cell linesApoptosisCell linesRetinoblastoma expressionBUB1BProtein expression correlates
2020
The mutational landscape of early‐ and typical‐onset oral tongue squamous cell carcinoma
Campbell BR, Chen Z, Faden DL, Agrawal N, Li RJ, Hanna GJ, Iyer NG, Boot A, Rozen SG, Vettore AL, Panda B, Krishnan NM, Pickering CR, Myers JN, Guo X, Kuhs K. The mutational landscape of early‐ and typical‐onset oral tongue squamous cell carcinoma. Cancer 2020, 127: 544-553. PMID: 33146897, PMCID: PMC7891879, DOI: 10.1002/cncr.33309.Peer-Reviewed Original ResearchConceptsOral tongue squamous cell carcinomaTongue squamous cell carcinomaSquamous cell carcinomaTongue cancerYounger patientsCell carcinomaTobacco useDriver genesOral tongue cancerPatient-related factorsCancer driver genesTongue cancer specimensAge of onsetMutational landscapeSomatic mutationsMutation signaturesYounger birth cohortsSomatic mutational burdenOlder patientsCancer Genome AtlasSmoking ratesMutational burdenCancer specimensMulticenter consortiumBirth cohortFunctionally impactful TP53 mutations are associated with increased risk of extranodal extension in clinically advanced oral squamous cell carcinoma
Gleber‐Netto F, Neskey D, de Mattos Costa A, Kataria P, Rao X, Wang J, Kowalski LP, Pickering CR, Dias‐Neto E, Myers JN. Functionally impactful TP53 mutations are associated with increased risk of extranodal extension in clinically advanced oral squamous cell carcinoma. Cancer 2020, 126: 4498-4510. PMID: 32797678, DOI: 10.1002/cncr.33101.Peer-Reviewed Original ResearchConceptsAdvanced oral squamous cell carcinomaOral squamous cell carcinomaExtranodal extensionSquamous cell carcinomaTP53 mutationsAncillary biomarkersCell carcinomaCancer Genome Atlas (TCGA) cohortPostoperative adjuvant therapyTP53 mutation statusWild-type TP53Adjuvant therapyCancer Genome AtlasCommon genetic eventClinicopathologic characteristicsClinical outcomesP53 protein functionPatient managementTreatment decisionsClinical challengeTherapeutic approachesPatientsMutation statusHeterogeneous groupIncreased chanceIdentifying predictors of HPV‐related head and neck squamous cell carcinoma progression and survival through patient‐derived models
Facompre ND, Rajagopalan P, Sahu V, Pearson AT, Montone KT, James CD, Gleber‐Netto F, Weinstein GS, Jalaly J, Lin A, Rustgi AK, Nakagawa H, Califano JA, Pickering CR, White EA, Windle BE, Morgan IM, Cohen RB, Gimotty PA, Basu D. Identifying predictors of HPV‐related head and neck squamous cell carcinoma progression and survival through patient‐derived models. International Journal Of Cancer 2020, 147: 3236-3249. PMID: 32478869, PMCID: PMC7554059, DOI: 10.1002/ijc.33125.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsClass I Phosphatidylinositol 3-KinasesErbB ReceptorsExome SequencingFemaleGenetic Association StudiesHead and Neck NeoplasmsHumansMaleMiceMutationNeoplasm TransplantationPapillomaviridaePapillomavirus E7 ProteinsPapillomavirus InfectionsPatient-Specific ModelingPrognosisSquamous Cell Carcinoma of Head and NeckSurvival AnalysisTNF Receptor-Associated Factor 3ConceptsPatient-derived xenograftsTumor mutational burdenPreclinical modelsMutational burdenHuman papilloma virus-related headHigh tumor mutational burdenNeck squamous cell carcinomaSquamous cell carcinoma progressionNeck squamous cell carcinoma progressionInadequate preclinical modelsSquamous cell carcinomaDisease recurrence riskPatient-derived modelsLow engraftment rateWhole-exome sequencingViral oncogene functionPrognostic alterationsLocal progressionHPV- patientsCancer Genome AtlasCell carcinomaHPV casesPIK3CA mutationsEngraftment rateLethal outcomeLoss of p53 drives neuron reprogramming in head and neck cancer
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA, Cai Y, Wang R, Knutsen E, Shimizu M, Ivan C, Rao X, Wang J, Silverman DA, Tam S, Zhao M, Caulin C, Zinger A, Tasciotti E, Dougherty PM, El-Naggar A, Calin GA, Myers JN. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020, 578: 449-454. PMID: 32051587, PMCID: PMC9723538, DOI: 10.1038/s41586-020-1996-3.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AntagonistsAdrenergic NeuronsAnimalsCell DivisionCell TransdifferentiationCellular ReprogrammingDisease Models, AnimalDisease ProgressionFemaleHumansMaleMiceMice, Inbred BALB CMicroRNAsMouth NeoplasmsNerve FibersNeuritesReceptors, AdrenergicRetrospective StudiesSensory Receptor CellsTumor MicroenvironmentTumor Suppressor Protein p53Xenograft Model Antitumor AssaysConceptsOral cancerNerve fibersAdrenergic nerve fibersPoor clinical outcomeTrigeminal sensory neuronsLoss of TP53Sensory denervationAdrenergic nervesChemical sympathectomyNerve densitySensory nervesClinical outcomesSolid tumor microenvironmentLoss of p53Neck cancerPharmacological blockadeEndogenous neuronsRetrospective analysisMouse modelSensory neuronsAdrenergic phenotypeAdrenergic receptorsTumor growthTumor progressionTumor microenvironment
2019
Identification of novel diagnostic markers for sinonasal undifferentiated carcinoma
Takahashi Y, Gleber‐Netto F, Bell D, Roberts D, Xie T, Abdelmeguid AS, Pickering C, Myers JN, Hanna EY. Identification of novel diagnostic markers for sinonasal undifferentiated carcinoma. Head & Neck 2019, 41: 2688-2695. PMID: 30932264, DOI: 10.1002/hed.25748.Peer-Reviewed Original ResearchConceptsSinonasal squamous cell carcinomaSinonasal undifferentiated carcinomaUndifferentiated carcinomaDiagnostic markerNew diagnostic molecular markersSquamous cell carcinomaDistinct pathologic entityPotential therapeutic targetNovel diagnostic markerNew diagnostic markersSNSCC patientsNeuroendocrine featuresCell carcinomaHistopathologic markersSquamous lineagePathologic entityUndifferentiated tumorsAggressive cancerTumor specimensTherapeutic targetOncology panelUnsupervised cluster analysisCarcinomaPatientsMarkersWeekly paclitaxel, carboplatin, cetuximab, and cetuximab, docetaxel, cisplatin, and fluorouracil, followed by local therapy in previously untreated, locally advanced head and neck squamous cell carcinoma
Haddad RI, Massarelli E, Lee JJ, Lin HY, Hutcheson K, Lewis J, Garden AS, Blumenschein GR, William WN, Pharaon RR, Tishler RB, Glisson BS, Pickering C, Gold KA, Johnson FM, Rabinowits G, Ginsberg LE, Williams MD, Myers J, Kies MS, Papadimitrakopoulou V. Weekly paclitaxel, carboplatin, cetuximab, and cetuximab, docetaxel, cisplatin, and fluorouracil, followed by local therapy in previously untreated, locally advanced head and neck squamous cell carcinoma. Annals Of Oncology 2019, 30: 471-477. PMID: 30596812, PMCID: PMC7360148, DOI: 10.1093/annonc/mdy549.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsCarboplatinCetuximabCisplatinDocetaxelFemaleFluorouracilHumansInduction ChemotherapyMaleMiddle AgedNeoplasm Recurrence, LocalNeoplasm StagingPaclitaxelPapillomaviridaePapillomavirus InfectionsProgression-Free SurvivalSquamous Cell Carcinoma of Head and NeckConceptsProgression-free survivalSquamous cell carcinomaHigh-risk groupNeck squamous cell carcinomaPrimary end pointInduction chemotherapyLocal therapyCell carcinomaC-TPFAdvanced headT stageHistorical controlsEnd pointPhase II clinical trialHuman papillomavirus (HPV) statusLow-risk groupEligible patientsMedian followWeekly paclitaxelLocoregional treatmentT3-4P16 statusClinical trialsRisk groupsHPV
2018
Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma
Ma J, Fu Y, Tu YY, Liu Y, Tan YR, Ju WT, Pickering CR, Myers JN, Zhang ZY, Zhong LP. Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma. BMC Cancer 2018, 18: 758. PMID: 30041611, PMCID: PMC6057048, DOI: 10.1186/s12885-018-4481-8.Peer-Reviewed Original ResearchConceptsOral squamous cell carcinomaSquamous cell carcinomaPrognostic analysisOSCC patientsCell carcinomaMethodsForty-six patientsClinical outcome analysisNext-generation sequencingAllele frequency thresholdWild-type genotypeParaffin-embedded tissuesNon-synonymous mutationsAllele frequenciesClinical outcomesOutcome analysisPatientsPanel of cancerType genotypeSignificant differencesCarcinomaFrequency thresholdNotch1CDKN2AMutationsCASP8Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants
Kalu NN, Mazumdar T, Peng S, Tong P, Shen L, Wang J, Banerjee U, Myers JN, Pickering CR, Brunell D, Stephan CC, Johnson FM. Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants. Cancer Letters 2018, 431: 64-72. PMID: 29807113, DOI: 10.1016/j.canlet.2018.05.029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArea Under CurveAurora Kinase ABenzamidesBiomarkersCarcinoma, Squamous CellCell CycleCell LineCell ProliferationDNA-Binding ProteinsDrug Evaluation, PreclinicalFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMiceMutationNeoplasm ProteinsNeoplasm TransplantationPapillomaviridaePapillomavirus InfectionsPharmacogeneticsPyrazolesUterine Cervical NeoplasmsConceptsAurora kinase inhibitorsDrug sensitivityWild-type cellsPolo-like kinasesInhibitor-induced apoptosisHigh-throughput drug screensNeck squamous cell carcinomaKinase inhibitorsHPV-negative cell linesSquamous cell carcinomaEffective drug classAurora kinase inhibitionG2-M arrestAurora kinasesHistone deacetylaseAurora inhibitorsCervical cancerTumor sizeCell carcinomaHuman papillomavirusCancer DatabaseDrug classesPharmacogenomic profilingXenograft modelM arrestHigh-Risk TP53 Mutations Are Associated with Extranodal Extension in Oral Cavity Squamous Cell Carcinoma
Sandulache VC, Michikawa C, Kataria P, Gleber-Netto FO, Bell D, Trivedi S, Rao X, Wang J, Zhao M, Jasser S, Myers JN, Pickering CR. High-Risk TP53 Mutations Are Associated with Extranodal Extension in Oral Cavity Squamous Cell Carcinoma. Clinical Cancer Research 2018, 24: 1727-1733. PMID: 29330202, PMCID: PMC5884733, DOI: 10.1158/1078-0432.ccr-17-0721.Peer-Reviewed Original ResearchConceptsOral cavity squamous cell carcinomaExtranodal extensionPrimary tumorDisease-free survivalPoor prognostic factorProspective clinical trialsSquamous cell carcinomaAggressive biological phenotypeClin Cancer ResHigh-risk mutationsPersonalized treatment decisionsWild-type TP53ENE statusOSCC dataPN0 tumorsCancer Genome AtlasLymph nodesPrognostic factorsClinical outcomesInstitutional cohortCell carcinomaClinical trialsPoor survivalTreatment decisionsTreatment selectionThe Integrated Genomic Landscape of Thymic Epithelial Tumors
Radovich M, Pickering CR, Felau I, Ha G, Zhang H, Jo H, Hoadley KA, Anur P, Zhang J, McLellan M, Bowlby R, Matthew T, Danilova L, Hegde AM, Kim J, Leiserson MDM, Sethi G, Lu C, Ryan M, Su X, Cherniack AD, Robertson G, Akbani R, Spellman P, Weinstein JN, Hayes DN, Raphael B, Lichtenberg T, Leraas K, Zenklusen JC, Network T, Ally A, Appelbaum E, Auman J, Balasundaram M, Balu S, Behera M, Beroukhim R, Berrios M, Blandino G, Bodenheimer T, Bootwalla M, Bowen J, Brooks D, Carcano F, Carlsen R, Carvalho A, Castro P, Chalabreysse L, Chin L, Cho J, Choe G, Chuah E, Chudamani S, Cibulskis C, Cope L, Cordes M, Crain D, Curley E, Defreitas T, Demchok J, Detterbeck F, Dhalla N, Dienemann H, Edenfield W, Facciolo F, Ferguson M, Frazer S, Fronick C, Fulton L, Fulton R, Gabriel S, Gardner J, Gastier-Foster J, Gehlenborg N, Gerken M, Getz G, Heiman D, Hobensack S, Holbrook A, Holt R, Hoyle A, Hutter C, Ittmann M, Jefferys S, Jones C, Jones S, Kasaian K, Kim J, Kimes P, Lai P, Laird P, Lawrence M, Lin P, Liu J, Lolla L, Lu Y, Ma Y, Maglinte D, Mallery D, Mardis E, Marra M, Martin J, Mayo M, Meier S, Meister M, Meng S, Meyerson M, Mieczkowski P, Miller C, Mills G, Moore R, Morris S, Mose L, Muley T, Mungall A, Mungall K, Naresh R, Newton Y, Noble M, Owonikoko T, Parker J, Paulaskis J, Penny R, Perou C, Perrin C, Pihl T, Radenbaugh A, Ramalingam S, Ramirez N, Rieker R, Roach J, Sadeghi S, Saksena G, Schein J, Schmidt H, Schumacher S, Shelton C, Shelton T, Shi Y, Shih J, Sica G, Silveira H, Simons J, Sipahimalani P, Skelly T, Sofia H, Soloway M, Stuart J, Sun Q, Tam A, Tan D, Tarnuzzer R, Thiessen N, Van Den Berg D, Vasef M, Veluvolu U, Voet D, Walter V, Wan Y, Wang Z, Warth A, Weis C, Weisenberger D, Wilkerson M, Wise L, Wong T, Wu H, Wu Y, Yang L, Zhang J, Zmuda E, Fujimoto J, Scapulatempo-Neto C, Moreira A, Hwang D, Huang J, Marino M, Korst R, Giaccone G, Gokmen-Polar Y, Badve S, Rajan A, Ströbel P, Girard N, Tsao M, Marx A, Tsao A, Loehrer P. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33: 244-258.e10. PMID: 29438696, PMCID: PMC5994906, DOI: 10.1016/j.ccell.2018.01.003.Peer-Reviewed Original ResearchConceptsThymic epithelial tumorsEpithelial tumorsWorld Health Organization (WHO) histological subtypeAutoimmune disease myasthenia gravisDisease myasthenia gravisMuscle autoantigensThymic carcinomaMyasthenia gravisAutoimmune diseasesHistological subtypesAdult malignanciesTumoral overexpressionMarked prevalenceTumorsThymomaSubtypesEnrichment of mutationsGenomic landscapeBiological effectsGenomic hallmarksMolecular linkUnique associationAssociationMulti-platform analysisGravis
2017
Replication Stress Leading to Apoptosis within the S-phase Contributes to Synergism between Vorinostat and AZD1775 in HNSCC Harboring High-Risk TP53 Mutation
Tanaka N, Patel AA, Tang L, Silver NL, Lindemann A, Takahashi H, Jaksik R, Rao X, Kalu NN, Chen TC, Wang J, Frederick MJ, Johnson F, Gleber-Netto FO, Fu S, Kimmel M, Wang J, Hittelman WN, Pickering CR, Myers JN, Osman AA. Replication Stress Leading to Apoptosis within the S-phase Contributes to Synergism between Vorinostat and AZD1775 in HNSCC Harboring High-Risk TP53 Mutation. Clinical Cancer Research 2017, 23: 6541-6554. PMID: 28790110, PMCID: PMC5724758, DOI: 10.1158/1078-0432.ccr-17-0947.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCarcinoma, Squamous CellCell Cycle ProteinsCell Line, TumorCell ProliferationDNA DamageDNA ReplicationDrug SynergismFemaleHead and Neck NeoplasmsHistone Deacetylase InhibitorsHumansHydroxamic AcidsMiceMutationNuclear ProteinsPhosphorylationProtein-Tyrosine KinasesPyrazolesPyrimidinesPyrimidinonesRisk FactorsS PhaseSquamous Cell Carcinoma of Head and NeckTumor Suppressor Protein p53VorinostatConceptsOrthotopic mouse modelHNSCC cellsOral cancerMouse modelNeck squamous cell carcinomaSquamous cell carcinomaCombination of vorinostatProlongs animal survivalHNSCC cell linesClin Cancer ResClonogenic survival assaysAdvanced HNSCCAdvanced headStandard therapyCell carcinomaCure rateEffective therapyClinical investigationCell cycleP53 mutationsTumor growthVorinostatAnimal survivalAZD1775Cancer ResComprehensive Genomic Profiling of Metastatic Squamous Cell Carcinoma of the Anal Canal
Morris V, Rao X, Pickering C, Foo WC, Rashid A, Eterovic K, Kim T, Chen K, Wang J, Shaw K, Eng C. Comprehensive Genomic Profiling of Metastatic Squamous Cell Carcinoma of the Anal Canal. Molecular Cancer Research 2017, 15: 1542-1550. PMID: 28784613, PMCID: PMC5991496, DOI: 10.1158/1541-7786.mcr-17-0060.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAnimalsAnus NeoplasmsCarcinoma, Squamous CellClass I Phosphatidylinositol 3-KinasesDNA-Binding ProteinsExome SequencingFemaleGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMiceMiddle AgedMutationNeoplasm MetastasisNeoplasm ProteinsNeoplasm TransplantationPapillomavirus InfectionsPatient-Specific ModelingTumor Suppressor Protein p53ConceptsMetastatic SCCAHuman papillomavirusMutation burdenPatient-derived xenograft modelsAvailable frozen tissueDistinct tumor subpopulationsAnti-EGFR treatmentTumor mutation burdenRare gastrointestinal malignancySquamous cell carcinomaNovel therapeutic approachesComprehensive molecular profilingLow mutation burdenComprehensive genomic characterizationMajority of casesWhole-exome sequencingGene mutation frequencyGastrointestinal malignanciesAdditional patientsAnal canalAnnual incidenceValidation cohortCell carcinomaStandard treatmentPrior infectionDistinct pattern of TP53 mutations in human immunodeficiency virus–related head and neck squamous cell carcinoma
Gleber‐Netto F, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, Kadara H, Zhang J, Wang J, William WN, Lee JJ, Nguyen ML, Pai SI, Walline HM, Shin DM, Ferris RL, Carey TE, Myers JN, Pickering CR, Consortium F. Distinct pattern of TP53 mutations in human immunodeficiency virus–related head and neck squamous cell carcinoma. Cancer 2017, 124: 84-94. PMID: 29053175, PMCID: PMC5785080, DOI: 10.1002/cncr.31063.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedCadherinsCarcinoma, Squamous CellCase-Control StudiesCaspase 8Class I Phosphatidylinositol 3-KinasesCyclin D1Cyclin-Dependent Kinase Inhibitor p16Cyclin-Dependent Kinase Inhibitor p18ErbB ReceptorsF-Box-WD Repeat-Containing Protein 7FemaleHead and Neck NeoplasmsHistone MethyltransferasesHistone-Lysine N-MethyltransferaseHIV InfectionsHLA-A AntigensHumansIn Situ HybridizationIntracellular Signaling Peptides and ProteinsKelch-Like ECH-Associated Protein 1LIM Domain ProteinsMaleMiddle AgedNF-E2-Related Factor 2Nuclear ProteinsPapillomaviridaePapillomavirus InfectionsProtein Serine-Threonine KinasesProto-Oncogene Proteins p21(ras)Receptor, Notch1Receptor, Notch2Receptor, Transforming Growth Factor-beta Type IIReceptors, Transforming Growth Factor betaSquamous Cell Carcinoma of Head and NeckTranscription FactorsTumor Suppressor Protein p53Tumor Suppressor ProteinsConceptsHuman immunodeficiency virus-infected individualsHuman immunodeficiency virus (HIV) infectionNeck squamous cell carcinomaHuman papillomavirus (HPV) statusImmunodeficiency virus infectionVirus-infected individualsSquamous cell carcinomaSample of HIVTP53 mutation frequencyHNSCC patientsCell carcinomaHistopathological differencesPolymerase chain reactionIon Reporter softwareP16 immunostainingDistinct biologyVirus infectionHigh incidenceHIVHNSCCMultiplex polymerase chain reactionDistinct patternsHIV virusTumor samplesTP53 geneAPOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism
Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, Huang PJ, Wang J, Chang IY, Yeh YM, Chen CD, Li HP, Luo JD, Tan BC, Chan TEH, Hsueh C, Chu LJ, Chen YT, Zhang B, Yang CY, Wu CC, Hsu CW, See LC, Tang P, Yu JS, Liao WC, Chiang WF, Rodriguez H, Myers JN, Chang KP, Chang YS. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nature Communications 2017, 8: 465. PMID: 28878238, PMCID: PMC5587710, DOI: 10.1038/s41467-017-00493-9.Peer-Reviewed Original ResearchConceptsOral squamous cell carcinomaSquamous cell carcinomaCell carcinomaTaiwanese oral squamous cell carcinomasClinical prognostic relevanceBetter overall survivalCancer prognostic biomarkersExpression of APOBEC3AOverall survivalPrognostic relevanceTaiwanese patientsPrognostic biomarkerSecond cohortGermline polymorphismsCancer typesProminent cancerMutational profileDeletion polymorphismPatientsCarcinomaMutation signaturesExpressionPolymorphismCohortTumorsIntegrative Analysis Identifies a Novel AXL–PI3 Kinase–PD-L1 Signaling Axis Associated with Radiation Resistance in Head and Neck Cancer
Skinner HD, Giri U, Yang LP, Kumar M, Liu Y, Story MD, Pickering CR, Byers LA, Williams MD, Wang J, Shen L, Yoo SY, Fan YH, Molkentine DP, Beadle BM, Meyn RE, Myers JN, Heymach JV. Integrative Analysis Identifies a Novel AXL–PI3 Kinase–PD-L1 Signaling Axis Associated with Radiation Resistance in Head and Neck Cancer. Clinical Cancer Research 2017, 23: 2713-2722. PMID: 28476872, PMCID: PMC5457365, DOI: 10.1158/1078-0432.ccr-16-2586.Peer-Reviewed Original ResearchMeSH KeywordsAgedAxl Receptor Tyrosine KinaseB7-H1 AntigenBiomarkers, TumorCarcinoma, Squamous CellCell Line, TumorFemaleGene Expression Regulation, NeoplasticHead and Neck NeoplasmsHumansLymphocytes, Tumor-InfiltratingMaleMiddle AgedPapillomaviridaePhosphatidylinositol 3-KinasesProteomicsProto-Oncogene ProteinsRadiation ToleranceReceptor Protein-Tyrosine KinasesRNA, MessengerSignal TransductionConceptsPD-L1HPV-negative HNSCC tumorsNeck squamous cell carcinomaCell linesHPV-negative HNSCC cell linesLocal failureLocal treatment failurePD-L1 axisPD-L1 expressionTumor-infiltrating lymphocytesSquamous cell carcinomaHuman papilloma virusLow expression groupActivation of AxlHNSCC cell linesClin Cancer ResNegative cell linesTreatment failureCell carcinomaPapilloma virusHNSCC tumorsExpression groupMultivariate analysisMRNA expression analysisPI3-kinasePrevalence of promoter mutations in the TERT gene in oral cavity squamous cell carcinoma
Chang K, Wang C, Pickering CR, Huang Y, Tsai C, Tsang N, Kao H, Cheng M, Myers JN. Prevalence of promoter mutations in the TERT gene in oral cavity squamous cell carcinoma. Head & Neck 2017, 39: 1131-1137. PMID: 28230921, DOI: 10.1002/hed.24728.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overCarcinoma, Squamous CellCohort StudiesDisease ProgressionDisease-Free SurvivalFemaleGene Expression Regulation, NeoplasticHumansKaplan-Meier EstimateMaleMiddle AgedMouth NeoplasmsMutationPrevalencePromoter Regions, GeneticReal-Time Polymerase Chain ReactionRetrospective StudiesRisk AssessmentStatistics, NonparametricSurvival AnalysisTaiwanTelomeraseConceptsOral cavity squamous cell carcinomaSquamous cell carcinomaTERT promoter mutationsAdjacent normal tissuesPromoter mutationsSomatic TERT promoter mutationsNormal tissuesC228T mutationTelomerase reverse transcriptase (TERT) promoterT mutationSCC tumor tissuesHuman telomerase reverse transcriptase (hTERT) promoterC250T mutationsReverse transcriptase promoterCell carcinomaSCC tumorsC228TTumor tissueTERT activityBetel nutTERT promoterTissuePresent studyMutationsSanger method
2016
Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates
Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S, Charpiot E, Adelmann CH, Ching G, Nguyen TN, Nicholas C, Thomas VD, Migden M, MacFarlane D, Thompson E, Shen J, Takata Y, McNiece K, Polansky MA, Abbas HA, Rajapakshe K, Gower A, Spira A, Covington KR, Xiao W, Gunaratne P, Pickering C, Frederick M, Myers JN, Shen L, Yao H, Su X, Rapini RP, Wheeler DA, Hawk ET, Flores ER, Tsai KY. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nature Communications 2016, 7: 12601. PMID: 27574101, PMCID: PMC5013636, DOI: 10.1038/ncomms12601.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsCarcinogenesisCarcinoma, Squamous CellDisease ProgressionDNA Mutational AnalysisExome SequencingFemaleGene Expression ProfilingGenomicsHigh-Throughput Nucleotide SequencingHumansKeratosis, ActinicMiceMice, HairlessMolecular Targeted TherapyPrecancerous ConditionsSequence Analysis, RNASkinSkin NeoplasmsUltraviolet RaysConceptsCross-species genomic analysisCross-species identificationCross-species analysisKey genomic changesGenomic analysisGenomic changesTranscriptional driversDistinct precancerous lesionsGenomic driversPotential targetSquamous cell carcinoma developmentMolecular similarityActinic keratosisAccessible modelDiverse sitesCutaneous squamous cell carcinomaHuman samplesSquamous cell carcinomaHairless mouse modelProgression sequenceMouse modelCarcinoma developmentCell carcinomaPrecancerous lesionsCommon treatment
2015
Mechanisms for the Generation of Two Quadruplications Associated with Split‐Hand Malformation
Gu S, Posey JE, Yuan B, Carvalho CM, Luk HM, Erikson K, Lo IF, Leung GK, Pickering CR, Chung BH, Lupski JR. Mechanisms for the Generation of Two Quadruplications Associated with Split‐Hand Malformation. Human Mutation 2015, 37: 160-164. PMID: 26549411, PMCID: PMC4718869, DOI: 10.1002/humu.22929.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAdultAgedAlu ElementsBase SequenceBasic Helix-Loop-Helix Transcription FactorsChromosome DuplicationChromosomes, Human, Pair 17DNA Copy Number VariationsFemaleGenetic LociGenome, HumanHand Deformities, CongenitalHumansInfantMaleMolecular Sequence DataPedigreeSequence AlignmentSequence Analysis, DNA