2024
The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells
Liao X, Li W, Zhou H, Rajendran B, Li A, Ren J, Luan Y, Calderwood D, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells. Nature Communications 2024, 15: 603. PMID: 38242867, PMCID: PMC10798966, DOI: 10.1038/s41467-024-44885-0.Peer-Reviewed Original ResearchConceptsCD8+ T cellsT cellsCancer immunotherapyMouse CD8+ T cellsAnti-tumor immunityTumor growth inhibition abilityAnti-tumor effectsInhibition of neddylationCD8Effector functionsTCR stimulationIL2 signalingCentral signaling pathwaysCore signaling pathwaysEffector activityNegative regulatory mechanismsTranslational implicationsImmunotherapyGrowth inhibition abilityCytokine signalingTCRProteomic alterationsSignaling pathwayCancerCRISPR-based screens
2022
Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology 2022, 24: 142-161. PMID: 36168065, PMCID: PMC9892292, DOI: 10.1038/s41580-022-00531-5.Peer-Reviewed Original ResearchConceptsExtracellular matrixCell-ECM adhesionCell-ECM interactionsLocal extracellular matrixAdhesion maturationAdhesion complexesAnimal cellsBiochemical signalingTransmembrane receptorsAdhesion structuresCell shapeIntegrin familyMolecular natureAge-related dysfunctionAdvanced imaging approachesCharacterization of rearrangementsMechanical forcesSignalingTissue formationAdhesionCytoskeletonMechanoregulationImmune responseImaging approachImproved understanding
2021
A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Frontiers In Cellular And Infection Microbiology 2021, 11: 660689. PMID: 33898333, PMCID: PMC8059790, DOI: 10.3389/fcimb.2021.660689.Peer-Reviewed Original ResearchConceptsShRNA screenMouse macrophagesGenome-wide screeningRab GTPasesRab GTPasePrimary mouse macrophagesGTPase Rab1bNext-generation sequencingLife-threatening systemic infectionsUnbiased identificationFluorescent populationsConcept screenIntracellular pathogensPrimary immune cellsRab32Bacterial pathogensRab1bHuman hostPrimary mouseInfected cellsHuman macrophagesImportance of macrophagesSalmonella typhi growthTyphi infectionImmune cells
2020
Signalling through cerebral cavernous malformation protein networks
Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biology 2020, 10: 200263. PMID: 33234067, PMCID: PMC7729028, DOI: 10.1098/rsob.200263.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersCarrier ProteinsDisease ManagementDisease SusceptibilityGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansIntracellular SpaceMutationProtein BindingProtein Interaction Domains and MotifsProtein Interaction MappingProtein Interaction MapsProtein TransportSignal TransductionConceptsCCM proteinsCerebral cavernous malformationsCell junctionalMEKK3-MEK5Protein complexesAdaptor proteinProtein functionSubcellular localizationCytoskeletal reorganizationComplex proteinsProtein networkRhoA-ROCKMolecular basisProtein activityGene expressionFunction mutationsCell adhesionCell contractilityProteinPathwayLeaky blood vesselsCurrent knowledgeDisease pathologyCdc42Recent advancesDifferences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.Peer-Reviewed Original ResearchConceptsKindlin-3Kindlin-2Focal adhesionsIntegrin cytoplasmic domainTransmembrane adhesion receptorsComparative sequence analysisLive-cell imagingAbility of cellsCytoplasmic domainF3 subdomainsMammalian cellsCytoplasmic componentsExtracellular environmentAdhesion receptorsKindlinSequence analysisIntegrin familySelf-associationIntegrin bindingPhysiological importanceMolecular levelPoint mutationsProteinCellsAdhesionSerine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. Journal Of Biological Chemistry 2020, 295: 3269-3284. PMID: 32005669, PMCID: PMC7062153, DOI: 10.1074/jbc.ra119.009794.Peer-Reviewed Original ResearchConceptsIntegrin cytoplasmic domain-associated protein-1N-terminal regionNuclear accumulationP21-activated kinase 4Ser-10Nuclear roleSerine phosphorylationNuclear localizationPhosphorylation-mimicking substitutionsNuclear localization signalCell-cell junctionsSer-25Localization signalKRIT1 functionThreonine residuesAdaptor proteinKRIT1 lossSubcellular localizationNeurovascular dysplasiaBlood vessel integrityVascular developmentKinase 4Cultured cellsPhosphorylationProtein 1Chapter 22: Structural and signaling functions of integrins
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.Peer-Reviewed Original ResearchConceptsFunction of integrinsAbility of integrinsTransmembrane adhesion receptorsNon-redundant functionsDifferent integrin heterodimersExtracellular matrix proteinsComplex structural rearrangementsDiverse downstreamCytoskeletal complexMetazoan lifeExtracellular environmentΒ-subunitAdhesion receptorsIntegrin heterodimersIntegrin familyMatrix proteinsCell adhesionIntegrinsStructural rearrangementsHeterodimersRecent advancesSubunitsSignalingProteinFunction
2019
Filamin A mediates isotropic distribution of applied force across the actin network
Kumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.Peer-Reviewed Original ResearchConceptsTalin tension sensorStress fibersActin networkFilamin ACortical actin networkCortical actin filamentsIntegrin-mediated adhesionActin cytoskeletonFocal adhesionsCortical actinFLNA knockdownActin filamentsTalinKnockdownCell sensingDirection of stretchTension sensorPhysiology of muscleUniaxial stretchForce transmissionCytoskeletonStrainsStretchAdhesionReexpression
2017
Novel ecto-tagged integrins reveal their trafficking in live cells
Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nature Communications 2017, 8: 570. PMID: 28924207, PMCID: PMC5603536, DOI: 10.1038/s41467-017-00646-w.Peer-Reviewed Original ResearchConceptsIntegrin functionΒ1 integrinLive cellsCell surface adhesion receptorsHeterodimeric cell-surface adhesion receptorsIntegrin endocytosisMulticellular organismsNovel powerful toolFocal adhesionsKnockout fibroblastsIntegrin activationAdhesion receptorsExtracellular loopIntegrinsTraffickingMajor mysteriesCellsTagsAdhesionHaloTagEndocytosisPowerful toolExocytosisOrganismsVesicles
2016
Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus*
Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA. Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus*. Journal Of Biological Chemistry 2016, 292: 1884-1898. PMID: 28003363, PMCID: PMC5290960, DOI: 10.1074/jbc.m116.762393.Peer-Reviewed Original Research
2015
The Rap1-RIAM pathway prefers β2 integrins
Calderwood DA. The Rap1-RIAM pathway prefers β2 integrins. Blood 2015, 126: 2658-2659. PMID: 26679542, PMCID: PMC4683328, DOI: 10.1182/blood-2015-09-668962.Peer-Reviewed Original ResearchRegulation of integrin-mediated adhesions
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Current Opinion In Cell Biology 2015, 36: 41-47. PMID: 26189062, PMCID: PMC4639423, DOI: 10.1016/j.ceb.2015.06.009.Peer-Reviewed Original ResearchConceptsIntegrin-mediated adhesionHeterodimeric transmembrane adhesion receptorsShort cytoplasmic tailTransmembrane adhesion receptorsSpecific intracellular proteinsClustering of integrinsMetazoan developmentActin cytoskeletonExtracellular ligandsCytoplasmic tailIntracellular traffickingExtracellular environmentIntracellular proteinsAdhesion receptorsAdhesive structuresIntegrin receptorsCell membraneRelay signalsIntegrinsEssential roleMechanical forcesCell attachmentAdhesionRecent advancesCytoskeleton
2014
The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering. PLOS Genetics 2014, 10: e1004756. PMID: 25393120, PMCID: PMC4230843, DOI: 10.1371/journal.pgen.1004756.Peer-Reviewed Original ResearchUp-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*
Bancroft T, Bouaouina M, Roberts S, Lee M, Calderwood DA, Schwartz M, Simons M, Sessa WC, Kyriakides TR. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*. Journal Of Biological Chemistry 2014, 290: 409-422. PMID: 25389299, PMCID: PMC4281743, DOI: 10.1074/jbc.m114.618421.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementFibroblastsGene Expression RegulationGenetic Complementation TestIntegrin beta1MiceMice, KnockoutNeuropeptidesNitric Oxide Synthase Type IIIPrimary Cell CultureProto-Oncogene Proteins c-aktRac1 GTP-Binding ProteinRNA, Small InterferingSignal TransductionSkinThrombospondinsWound HealingWounds, NonpenetratingDynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis
Lee MY, Skoura A, Park EJ, Landskroner-Eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 2014, 141: 1465-1472. PMID: 24598168, PMCID: PMC3957370, DOI: 10.1242/dev.104539.Peer-Reviewed Original ResearchConceptsΒ1 integrinFocal adhesion sizeGrowth factor signalingVascular endothelial growth factor signalingEndocytic turnoverIntegrin endocytosisDynamin 2Adhesion sizeFactor signalingDevelopmental angiogenesisAngiogenic sproutingCell migrationCultured endothelial cellsMultiple integrinsInducible lossIntegrinsMorphogenesisActivation stateDNM2Endothelial cellsAngiogenesisVivoEndocytosisSurface levelSignalingPodocyte-associated talin1 is critical for glomerular filtration barrier maintenance
Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. Journal Of Clinical Investigation 2014, 124: 1098-1113. PMID: 24531545, PMCID: PMC3934159, DOI: 10.1172/jci69778.Peer-Reviewed Original ResearchConceptsNephrotic syndromeFoot process effacementLoss of talin1Glomerular filtration barrierGlomerular injuryMurine modelProcess effacementKidney's glomerular filtration barrierFiltration barrierGlomerular basement membraneSevere proteinuriaKidney failurePharmacologic inhibitionSyndromeBarrier maintenanceCalpain activityIntegrin activationEpithelial cellsPodocytesModest reductionΒ1 integrin activationBasement membranePathogenesisInjuryCytoskeletal protein talin1Integrin Cytoplasmic Tail Interactions
Morse EM, Brahme NN, Calderwood DA. Integrin Cytoplasmic Tail Interactions. Biochemistry 2014, 53: 810-820. PMID: 24467163, PMCID: PMC3985435, DOI: 10.1021/bi401596q.Peer-Reviewed Original ResearchConceptsIntegrin-interacting proteinsIntegrin cytoplasmic tailsCell surface adhesion receptorsIntegrin-binding proteinsHeterodimeric cell-surface adhesion receptorsSurface adhesion receptorsExtracellular ligandsMulticellular lifeCytoplasmic tailIntegrin engagementCell motilityExtracellular environmentTransduce chemicalIntegrin activityIntegrin localizationIntracellular proteinsAdhesion receptorsTail interactionsMechanical signalsProteinIntegrinsCellsCytoskeletonLocalizationTraffickingCerebral cavernous malformation proteins at a glance
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. Journal Of Cell Science 2014, 127: 701-707. PMID: 24481819, PMCID: PMC3924200, DOI: 10.1242/jcs.138388.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCapillary PermeabilityCarrier ProteinsCentral Nervous System NeoplasmsHemangioma, Cavernous, Central Nervous SystemHumansKRIT1 ProteinMembrane ProteinsMicrotubule-Associated ProteinsNeoplasm ProteinsProto-Oncogene ProteinsRho GTP-Binding ProteinsSignal TransductionConceptsAdaptor proteinCerebral Cavernous Malformation ProteinsMulti-domain adaptor proteinBasic cellular processesProtein-protein interactionsCerebral cavernous malformationsAccompanying posterGlance articleCCM proteinsCellular processesProtein functionCellular phenotypesTrimeric complexFunction mutationsCell adhesionCell scienceProteinLeaky blood vesselsFocal neurological defectsCurrent understandingNeurological defectsCytoskeletalGenesPDCD10KRIT1Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. Journal Of Cell Science 2014, 127: 4308-4321. PMID: 25086068, PMCID: PMC4179494, DOI: 10.1242/jcs.155879.Peer-Reviewed Original ResearchConceptsIntegrin activationKindlin-2Kindlin-3Focal adhesion proteinsFunctional differencesIntegrin-linked kinaseILK complexAdhesion proteinsF2 subdomainMolecular basisIsoform specificityComplex bindsKindlinFA targetingActivation defectsCell adhesionActivationFALocalizesKinaseGFPSignalingILKIsoformsProteinTRIM15 is a focal adhesion protein that regulates focal adhesion disassembly
Uchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, Huang F, Floyd RW, Yang H, Hamilton WL, Bewersdorf J, Xiong Y, Calderwood DA, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Journal Of Cell Science 2014, 127: 3928-3942. PMID: 25015296, PMCID: PMC4163643, DOI: 10.1242/jcs.143537.Peer-Reviewed Original ResearchConceptsFocal adhesion proteinsFocal adhesionsCell migrationAdhesion proteinsMulti-adaptor proteinTripartite motif (TRIM) protein familyFocal adhesion dynamicsFocal adhesion turnoverFocal adhesion componentsCoiled-coil domainImpaired cell migrationII-independent mannerLD2 motifAdhesion turnoverActin cytoskeletonProtein familyAdhesion dynamicsCellular functionsDynamic turnoverMacromolecular complexesRegulatory componentsFocal contactsAdhesion componentsExtracellular matrixTRIM15