2011
A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011, 476: 467-471. PMID: 21832993, PMCID: PMC3179485, DOI: 10.1038/nature10312.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCell DifferentiationChromosomal Proteins, Non-HistoneDNA-Binding ProteinsGene Expression RegulationGene Rearrangement, T-LymphocyteGenes, RAG-1MiceNuclear ProteinsPhosphoproteinsReceptors, Antigen, T-Cell, alpha-betaRecombinasesThymus GlandTranscription, GeneticRecombination centres and the orchestration of V(D)J recombination
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 2011, 11: 251-263. PMID: 21394103, DOI: 10.1038/nri2941.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChromatinDNA-Binding ProteinsGene Rearrangement, T-LymphocyteGenes, RAG-1Homeodomain ProteinsHumansMiceReceptors, AntigenRecombination, GeneticVDJ ExonsVDJ RecombinasesConceptsAntigen receptor genesRecombination signal sequencesSignal sequenceHigher-order chromatin architectureHistone H3 lysine 4Receptor geneAntigen receptor gene segmentsInactive nuclear compartmentsPlant homeodomain (PHD) fingerH3 lysine 4Antigen receptor lociReceptor gene segmentsEctopic recruitmentChromatin architectureChromatin structureLysine 4Active chromatinGenome instabilityHistone modificationsRAG2 proteinsThousands of sitesNuclear compartmentRecombination eventsTranscriptional activityGenomic DNA
2010
The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci
Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG. The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci. Cell 2010, 141: 419-431. PMID: 20398922, PMCID: PMC2879619, DOI: 10.1016/j.cell.2010.03.010.Peer-Reviewed Original ResearchConceptsJ gene segmentsRAG proteinsGene segmentsSignal sequenceLineage-specific mannerAntigen receptor lociRecombination signal sequencesLysine 4Active chromatinRAG2 bindThousands of sitesHistone 3Receptor locusDevelopmental stagesD gene segmentsDiscrete sitesCritical initial stepVivo patternRAG1BindingRAG2Beta JProteinRecombinationSpecific binding
2007
The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination
Drejer-Teel AH, Fugmann SD, Schatz DG. The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination. Molecular And Cellular Biology 2007, 27: 6288-6299. PMID: 17636023, PMCID: PMC2099602, DOI: 10.1128/mcb.00835-07.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesDNA cleavageGene segmentsDNA cleavage stepRecombination-activating gene 1Dbeta gene segmentVariable region exonsJbeta gene segmentsRAG proteinsDNA elementsSignal sequenceDirect VbetaRegion exonsGene 1Oligonucleotide substratesLocus sequenceDistinct combinationsProteinRecombinationCleavageNickingCleavage stepSequenceDifferent stepsExons
2004
New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2
Chatterji M, Tsai C, Schatz DG. New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2. Immunological Reviews 2004, 200: 261-271. PMID: 15242411, DOI: 10.1111/j.0105-2896.2004.00167.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA-Binding ProteinsGene Rearrangement, B-LymphocyteGene Rearrangement, T-LymphocyteHomeodomain ProteinsMiceRecombination, GeneticTranslocation, GeneticTransposasesVDJ RecombinasesConceptsRAG proteinsRecombination-activating gene 1Transposition activityAntigen receptor lociDNA double-stand breaksRAG1/RAG2Lymphoid-specific factorsDouble-stand breaksEndonuclease activityGene 1Chromosomal translocationsVariety of mechanismsProteinSpecific sitesRAG2Ancient reactionRecombinationRecent studiesGenomeV(D)J recombination
Schatz DG. V(D)J recombination. Immunological Reviews 2004, 200: 5-11. PMID: 15242391, DOI: 10.1111/j.0105-2896.2004.00173.x.Peer-Reviewed Original ResearchAnimalsDNA-Binding ProteinsGene Rearrangement, B-LymphocyteGene Rearrangement, T-LymphocyteGenes, RAG-1HumansNuclear ProteinsVDJ Recombinases
1999
Developing B-cell theories
Schatz D. Developing B-cell theories. Nature 1999, 400: 615-617. PMID: 10458155, DOI: 10.1038/23134.Commentaries, Editorials and LettersCharacterization of TCR gene rearrangements during adult murine T cell development.
Livák F, Tourigny M, Schatz D, Petrie H. Characterization of TCR gene rearrangements during adult murine T cell development. The Journal Of Immunology 1999, 162: 2575-80. PMID: 10072498, DOI: 10.4049/jimmunol.162.5.2575.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene Rearrangement, beta-Chain T-Cell Antigen ReceptorGene Rearrangement, delta-Chain T-Cell Antigen ReceptorGene Rearrangement, gamma-Chain T-Cell Antigen ReceptorGene Rearrangement, T-LymphocyteHyaluronan ReceptorsMiceMice, Inbred C57BLPolymerase Chain ReactionReceptors, Interleukin-2T-LymphocytesConceptsTCRbeta locusTCRdelta locusGammadelta T cell lineagesMurine T cell developmentTCR gene rearrangementsT lineage cellsGene rearrangementsT cell developmentLineage decisionsLocus recombinationLineage commitmentProductive rearrangementsIrreversible commitmentCell lineagesDelta geneMolecular evidenceCell developmentTCRbeta rearrangementsDevelopmental stagesT-cell lineageTCR complexLociLineage cellsLineagesGenes
1998
Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system
Agrawal A, Eastman Q, Schatz D. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 1998, 394: 744-751. PMID: 9723614, DOI: 10.1038/29457.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodiesB-LymphocytesBinding SitesCatalysisCell LineDNADNA Transposable ElementsDNA-Binding ProteinsDNA, CircularDrug Resistance, MicrobialEvolution, MolecularGene Rearrangement, B-LymphocyteGene Rearrangement, T-LymphocyteHigh Mobility Group ProteinsHomeodomain ProteinsImmune SystemMiceMolecular Sequence DataReceptors, Antigen, T-CellRecombination, GeneticRestriction MappingTransposasesVertebratesConceptsT-cell receptor genesRecombination signalsSequence-specific DNA recognitionAncestral receptor geneComponent gene segmentsSite-specific recombination reactionPiece of DNAEvolutionary divergenceJawless vertebratesRecombination-activating geneTransposable elementsDNA recognitionRetroviral integrationGermline insertionDNA moleculesGenesShort duplicationsDNA cleavageRAG1Gene segmentsTransposition reactionRAG2Receptor geneTarget DNA moleculesTarget DNAAlternative splicing of rearranged T cell receptor δ sequences to the constant region of the α locus
Livák F, Schatz D. Alternative splicing of rearranged T cell receptor δ sequences to the constant region of the α locus. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 5694-5699. PMID: 9576946, PMCID: PMC20441, DOI: 10.1073/pnas.95.10.5694.Peer-Reviewed Original ResearchConceptsCalpha geneTCRalpha/delta locusT cell receptor alpha/delta locusDelta locusAlpha/delta locusProtein coding capacityTranscriptional controlAlternative splicingSplicing variationsDistinct functional capacitiesAlternative transcriptsDelta proteinΑ locusChimeric proteinConstant genesAlpha proteinGene-deficient miceCoding capacityGenesThymocyte developmentAlphabeta thymocytesNovel insightsTCRbeta chainLociDistinct diversity
1997
Coding Joint Formation in a Cell-Free V(D)J Recombination System
Leu T, Eastman Q, Schatz D. Coding Joint Formation in a Cell-Free V(D)J Recombination System. Immunity 1997, 7: 303-314. PMID: 9285414, DOI: 10.1016/s1074-7613(00)80532-4.Peer-Reviewed Original ResearchConceptsJoint formation
1995
In-frame TCR δ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision
Livak F, Petrie H, Crisps I, Schatz D. In-frame TCR δ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision. Immunity 1995, 2: 617-627. PMID: 7796295, DOI: 10.1016/1074-7613(95)90006-3.Peer-Reviewed Original ResearchConceptsT cell lineage decisionsCell lineage decisionsLineage decisionsRandom gene rearrangementsSouthern blot analysisT cell receptor complexCell receptor complexGene rearrangementsDelta locusLocus sequenceGamma delta lineageReceptor complexT cell receptorBlot analysisDistinct precursorsCommon precursorCell receptorCritical roleDelta rearrangementsDelta lineageRearrangementΔ gene rearrangementAlpha betaT cellsGamma delta T-cell receptor
1991
Thymocyte Expression of RAG-1 and RAG-2: Termination by T Cell Receptor Cross-Linking
Turka L, Schatz D, Oettinger M, Chun J, Gorka C, Lee K, McCormack W, Thompson C. Thymocyte Expression of RAG-1 and RAG-2: Termination by T Cell Receptor Cross-Linking. Science 1991, 253: 778-781. PMID: 1831564, DOI: 10.1126/science.1831564.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCD3 ComplexCell DifferentiationCell SurvivalDNA NucleotidyltransferasesDNA-Binding ProteinsGene ExpressionGene Rearrangement, T-LymphocyteHomeodomain ProteinsHumansMiceNuclear ProteinsNucleic Acid HybridizationProteinsReceptor AggregationReceptors, Antigen, T-CellReceptors, Interleukin-2RNA, MessengerT-Lymphocyte SubsetsThymus GlandVDJ RecombinasesConceptsMajor histocompatibility complexCortical thymocytesSelf-major histocompatibility complexT cell receptor expressionHLA class IRAG-2Cell receptor expressionTCR complexRAG expressionT cell developmentT cell surfaceThymic subpopulationsCD4-CD8Intact thymusReceptor expressionThymic maturationRAG-1RAG-2 expressionThymocyte TCRThymocyte maturationHistocompatibility complexClass IReceptor crossThymocyte expressionBlot analysis
1990
RAG-1 and RAG-2, Adjacent Genes That Synergistically Activate V(D)J Recombination
Oettinger M, Schatz D, Gorka C, Baltimore D. RAG-1 and RAG-2, Adjacent Genes That Synergistically Activate V(D)J Recombination. Science 1990, 248: 1517-1523. PMID: 2360047, DOI: 10.1126/science.2360047.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBiological EvolutionCattleCell LineChickensCricetinaeDNADNA NucleotidyltransferasesDNA-Binding ProteinsDogsFemaleGene Rearrangement, B-LymphocyteGene Rearrangement, T-LymphocyteHomeodomain ProteinsHumansMaleMiceMolecular Sequence DataMultigene FamilyNuclear ProteinsNucleic Acid HybridizationOpossumsProteinsRabbitsRecombination, GeneticRestriction MappingTransfectionTurtlesVDJ RecombinasesConceptsRAG-2RAG-1Adjacent genesRecombinase activityFrequency of recombinationPutative proteinUntranslated sequenceSingle exonGenomic rearrangementsExpression patternsVast repertoireGenesComplementary DNAAmino acidsT cell receptorCell receptorRecombinationSequenceKilobasesExonsCotransfectionRecombinaseSpeciesProteinDNA
1989
The V(D)J recombination activating gene, RAG-1
Schatz D, Oettinger M, Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell 1989, 59: 1035-1048. PMID: 2598259, DOI: 10.1016/0092-8674(89)90760-5.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBiological EvolutionCell LineCloning, MolecularDNA NucleotidyltransferasesGene Expression RegulationGene LibraryGene Rearrangement, T-LymphocyteGenes, ImmunoglobulinGenomic LibraryHumansMiceMolecular Sequence DataNucleic Acid HybridizationOligonucleotide ProbesReceptors, Antigen, T-CellRecombination, GeneticSequence Homology, Nucleic AcidT-LymphocytesTransfectionVDJ Recombinases