2020
Bruce Nathan Ames - Paradigm shifts inside the cancer research revolution
Smith CJ, Perfetti TA, Berry SC, Brash DE, Bus J, Calabrese E, Clemens RA, Fowle JRJ, Greim H, MacGregor JT, Maronpot R, Pressman P, Zeiger E, Hayes AW. Bruce Nathan Ames - Paradigm shifts inside the cancer research revolution. Mutation Research/Reviews In Mutation Research 2020, 787: 108363. PMID: 34083041, DOI: 10.1016/j.mrrev.2020.108363.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2019
Genomic sites hypersensitive to ultraviolet radiation
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 24196-24205. PMID: 31723047, PMCID: PMC6883822, DOI: 10.1073/pnas.1907860116.Peer-Reviewed Original ResearchMeSH Keywords5' Untranslated RegionsCells, CulturedDNA DamageFibroblastsGene Expression RegulationGenome, HumanHigh-Throughput Nucleotide SequencingHumansMelanocytesMelanomaMutationPromoter Regions, GeneticProtein BiosynthesisPyrimidine DimersPyrimidine NucleotidesSkin NeoplasmsTOR Serine-Threonine KinasesUltraviolet RaysConceptsCyclobutane pyrimidine dimersETS family transcription factorsIndividual gene promotersFamily transcription factorsRNA-binding proteinPrimary human melanocytesSingle-base resolutionEpigenetic marksGenomic averageTranslation regulationGenomic sitesMotif locationsTranscription factorsCell physiologyGene promoterCancer driversGenomeHuman melanocytesCell typesTumor evolutionCell pathwaysRare mutationsUV targetPyrimidine dimersApurinic sitesAccelerating cancer without mutations
Brash DE. Accelerating cancer without mutations. ELife 2019, 8: e45809. PMID: 30895924, PMCID: PMC6428566, DOI: 10.7554/elife.45809.Commentaries, Editorials and Letters
2015
Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure
Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJ, Halaban R, Douki T, Brash DE. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 2015, 347: 842-847. PMID: 25700512, PMCID: PMC4432913, DOI: 10.1126/science.1256022.Peer-Reviewed Original ResearchConceptsDark cyclobutane pyrimidine dimersExcited electronic statesUltraviolet photonsUV photonsElectronic statesTriplet stateSunlight-induced melanomaCytosine-containing cyclobutane pyrimidine dimersEnergy transferPhotonsPicosecondsElectronsUV exposureRadiationChemiexcitationEnergyStatePhotoproducts
2014
UV Signature Mutations
Brash DE. UV Signature Mutations. Photochemistry And Photobiology 2014, 91: 15-26. PMID: 25354245, PMCID: PMC4294947, DOI: 10.1111/php.12377.Peer-Reviewed Original Research
2012
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma
Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker J, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics 2012, 44: 1006-1014. PMID: 22842228, PMCID: PMC3432702, DOI: 10.1038/ng.2359.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overCase-Control StudiesDNA Mutational AnalysisExomeFemaleGene FrequencyGenetic Predisposition to DiseaseHumansMaleMelanomaMiddle AgedModels, MolecularMutationProto-Oncogene Proteins B-rafProto-Oncogene Proteins p21(ras)Rac1 GTP-Binding ProteinSequence Analysis, DNASkin NeoplasmsUveal NeoplasmsConceptsSun-exposed melanomas
2009
The mysterious steps in carcinogenesis
Brash D, Cairns J. The mysterious steps in carcinogenesis. British Journal Of Cancer 2009, 101: 379-380. PMID: 19638985, PMCID: PMC2720245, DOI: 10.1038/sj.bjc.6605171.Commentaries, Editorials and Letters
2004
UVB-induced apoptosis drives clonal expansion during skin tumor development
Zhang W, Hanks AN, Boucher K, Florell SR, Allen SM, Alexander A, Brash DE, Grossman D. UVB-induced apoptosis drives clonal expansion during skin tumor development. Carcinogenesis 2004, 26: 249-257. PMID: 15498793, PMCID: PMC2292404, DOI: 10.1093/carcin/bgh300.Peer-Reviewed Original Research
2003
Antigen-specific immunity does not mediate acute regression of UVB-induced p53-mutant clones
Remenyik É, Wikonkál NM, Zhang W, Paliwal V, Brash DE. Antigen-specific immunity does not mediate acute regression of UVB-induced p53-mutant clones. Oncogene 2003, 22: 6369-6376. PMID: 14508517, DOI: 10.1038/sj.onc.1206657.Peer-Reviewed Original ResearchConceptsAntigen-specific immunityP53-mutant clonesUltraviolet BAcute regressionNatural killer T cellsKiller T cellsRag1 knockout miceChronic UVB irradiationMurine skin tumorsInduction of carcinomasSignificant differencesUVB carcinogenesisT cellsSkin tumorsKnockout micePersistence of clonesEpidermal thicknessMurine epidermisUVB irradiationEpidermal sheetsImmunityChronic irradiationGene 1MiceRegressionInactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice
Wikonkal NM, Remenyik E, Knezevic D, Zhang W, Liu M, Zhao H, Berton TR, Johnson DG, Brash DE. Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice. Nature Cell Biology 2003, 5: 655-660. PMID: 12833065, DOI: 10.1038/ncb1001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell Cycle ProteinsCell SurvivalCell Transformation, NeoplasticCells, CulturedDNA DamageDNA-Binding ProteinsE2F Transcription FactorsE2F1 Transcription FactorFemaleFibroblastsGene Expression Regulation, NeoplasticGenes, SuppressorKeratinocytesMaleMiceMice, KnockoutMutationSex RatioSkin NeoplasmsTranscription FactorsTumor Suppressor Protein p53Ultraviolet RaysConceptsUVB-induced apoptosisEarly-onset tumorsDouble knockout miceTrp53-deficient miceKnockout miceCancer sensitivityUVB exposureGenetic abnormalitiesMiceKeratinocyte apoptosisProtective mechanismApoptosis defectsApoptosis resistanceApoptosisDouble knockoutApoptosis pathwayE2F1 transcription factorE2F1 functionsPrimary fibroblastsE2F1Trp53S phase
1998
Skin precancer.
Brash DE, Pontén J. Skin precancer. Cancer Surveys 1998, 32: 69-113. PMID: 10489624.ChaptersConceptsTP53 mutationsClonal expansionCell carcinomaHair follicle originHigh-risk papillomasRegression of dysplasiaTP53 mutant clonesSquamous cell carcinomaBasal cell carcinomaRegression of melanomaCell of originPrecancerous eventsBCC tumorsMelanoma cell linesGenetics of melanomaPrecancerous lesionsRelative riskFamilial predispositionSuch lesionsImmunosuppressant drugsDysplastic naeviNormal skinPrecancerChemotherapeutic agentsMelanoma
1997
Sunlight and the onset of skin cancer
Brash D. Sunlight and the onset of skin cancer. Trends In Genetics 1997, 13: 410-414. PMID: 9351343, DOI: 10.1016/s0168-9525(97)01246-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1996
Frequent clones of p53-mutated keratinocytes in normal human skin
Jonason A, Kunala S, Price G, Restifo R, Spinelli H, Persing J, Leffell D, Tarone R, Brash D. Frequent clones of p53-mutated keratinocytes in normal human skin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 14025-14029. PMID: 8943054, PMCID: PMC19488, DOI: 10.1073/pnas.93.24.14025.Peer-Reviewed Original ResearchConceptsP53-mutated keratinocytesNormal individualsSun-shielded skinSun-exposed skinNormal human skinHuman skinWhole-mount preparationsP53-mutated cellsCancer predictsDermal-epidermal junctionSubstantial burdenFrequent clonesClonal expansionHair folliclesGenetic hitsTumor promoterSkinKeratinocytesCellsThe role of the human homologue of Drosophila patched in sporadic basal cell carcinomas
Gailani M, Ståhle-Bäckdahl M, Leffell D, Glyn M, Zaphiropoulos P, Undén A, Dean M, Brash D, Bale A, Toftgård R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics 1996, 14: 78-81. PMID: 8782823, DOI: 10.1038/ng0996-78.Peer-Reviewed Original ResearchConceptsSporadic basal cell carcinomasSingle-strand conformational polymorphismTumor suppressorDrosophila segment polarity geneSegment polarity genesHedgehog target genesPolarity genesDrosophila mutantsStrong homologyHuman homologueTarget genesMutational inactivationMutant transcriptsStrand conformational polymorphismNorthern blotSSCP variantsGenesNegative feedback mechanismSitu hybridizationConformational polymorphismNevoid basal cell carcinoma syndromeSuppressorAllelic lossInactivationMutationsSunlight and skin cancer.
Leffell DJ, Brash DE. Sunlight and skin cancer. Scientific American 1996, 275: 52-3, 56-9. PMID: 8658110, DOI: 10.1038/scientificamerican0796-52.Publications for non-academic audiencesTumor Suppressor Gene Mutations and Photocarcinogenesis
Ziegler A, Jonason A, Simon J, Leffell D, Brash DE. Tumor Suppressor Gene Mutations and Photocarcinogenesis. Photochemistry And Photobiology 1996, 63: 432-435. PMID: 8934758, DOI: 10.1111/j.1751-1097.1996.tb03064.x.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion.
Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ. Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. Journal Of Investigative Dermatology Symposium Proceedings 1996, 1: 136-42. PMID: 9627707.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSquamous cell carcinomaCell carcinomaActinic keratosisBasal cell carcinomaHuman skin cancerP53 tumor suppressor geneP53-mutated cellsSunburn cellsApoptotic keratinocytesSkin cancerP53 mutationsNormal skinTumor initiatorTumor promotionFunction of p53Cellular proofreadingTumor suppressor geneCarcinomaMouse skinClonal expansionP53 geneCarcinogenic DNA lesionsP53 allelePrecancerous cellsSunlight exposureRelationship Between Sunlight Exposure and a Key Genetic Alteration in Basal Cell Carcinoma
Gailani M, Leffell D, Ziegler A, Gross E, Brash D, Bale A. Relationship Between Sunlight Exposure and a Key Genetic Alteration in Basal Cell Carcinoma. Journal Of The National Cancer Institute 1996, 88: 349-354. PMID: 8609643, DOI: 10.1093/jnci/88.6.349.Peer-Reviewed Original ResearchConceptsBasal cell carcinomaLoss of heterozygosityCell carcinomaP53 geneSunlight exposureExact testGenetic alterationsPathogenesis of BCCSun-exposed areasFrequency of LOHMohs micrographic surgical techniqueEnvironmental agentsLocation of tumorFisher's exact testSkin cancer patientsKey genetic alterationsUVB radiationChi-squared analysisFrequent genetic alterationsLimited associationSpecific environmental agentsBCC incidenceTumor characteristicsCancer patientsCommon cancer
1994
Sunburn and p53 in the onset of skin cancer
Ziegler A, Jonason A, Leffellt D, Simon J, Sharma H, Kimmelman J, Remington L, Jacks T, Brash D. Sunburn and p53 in the onset of skin cancer. Nature 1994, 372: 773-776. PMID: 7997263, DOI: 10.1038/372773a0.Peer-Reviewed Original ResearchConceptsActinic keratosisP53 mutationsSquamous cell carcinomaP53 tumor suppressor geneP53-mutated cellsCell carcinomaApoptotic keratinocytesSkin cancerTumor initiatorTumor suppressor geneMouse skinClonal expansionPrecancerous cellsTumor promoterCarcinomaSkinTissue responseP53SunburnCell differentiationDNA damageAberrant cell differentiationCellsResponseKeratosis
1992
Status of the p53 tumor suppressor gene in human squamous carcinoma cell lines.
Reiss M, Brash DE, Muñoz-Antonia T, Simon JA, Ziegler A, Vellucci VF, Zhou ZL. Status of the p53 tumor suppressor gene in human squamous carcinoma cell lines. Oncology Research Featuring Preclinical And Clinical Cancer Therapeutics 1992, 4: 349-57. PMID: 1486218.Peer-Reviewed Original Research