2024
High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis
Goedeke L, Strober J, Suh R, Paolella L, Li X, Rogers J, Petersen M, Nasiri A, Casals G, Kahn M, Cline G, Samuel V, Shulman G, Vatner D. High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis. IScience 2024, 27: 111175. PMCID: PMC11550620, DOI: 10.1016/j.isci.2024.111175.Peer-Reviewed Original ResearchDuration of high-fat dietAttenuated insulin signalingHigh-fat dietHepatic insulin resistanceInsulin signalingInsulin stimulationLipogenic substrateStimulation of de novo lipogenesisReduced lipogenesisHFD feedingReduce DNLInsulin resistanceResistance per seLipogenesisInsulin resistance per sePathway selectionGlucose metabolismHepatic IRMiceFat dietSREBP1cINSRO-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice
Ohgaku S, Ida S, Ohashi N, Morino K, Ishikado A, Yanagimachi T, Murata K, Sato D, Ugi S, Nasiri A, Shulman G, Maegawa H, Kume S, Fujita Y. O-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice. Heliyon 2024, 10: e34490. PMID: 39130439, PMCID: PMC11315187, DOI: 10.1016/j.heliyon.2024.e34490.Peer-Reviewed Original ResearchEndothelial cellsHigh-fat dietControl miceLipid absorptionExpression of VEGFR3Body weightNitric oxide donorReduced body weightKnockout miceTherapeutic strategiesOxide donorDecreased expressionIntercellular junctionsMiceHigh-fatNutrient-sensing mechanismsFat absorptionO-GlcNAcylationGlucose metabolismVE-cadherinMorphological alterationsMetabolic regulatory mechanismsJunction morphologyLipid metabolismO-GlcNAc transferase
2020
Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease.
Ter Horst KW, Vatner DF, Zhang D, Cline GW, Ackermans MT, Nederveen AJ, Verheij J, Demirkiran A, van Wagensveld BA, Dallinga-Thie GM, Nieuwdorp M, Romijn JA, Shulman GI, Serlie MJ. Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease. Diabetes Care 2020, 44: 489-498. PMID: 33293347, PMCID: PMC7818337, DOI: 10.2337/dc20-1644.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisFatty liver diseaseBariatric surgeryLiver diseaseImpaired insulin-mediated suppressionGlucose productionHepatic de novo lipogenesisPeripheral glucose metabolismHyperinsulinemic-euglycemic clampType 2 diabetesInsulin-mediated suppressionInsulin-resistant subjectsHepatic insulin resistanceLiver biopsy samplesSuppress glucose productionLipogenic transcription factorsInsulin-mediated regulationObese subjectsInsulin resistanceAcute increaseNovo lipogenesisGlucose metabolismBiopsy samplesParadoxical increaseCellular and Molecular Mechanisms of Metformin Action
LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocrine Reviews 2020, 42: 77-96. PMID: 32897388, PMCID: PMC7846086, DOI: 10.1210/endrev/bnaa023.Peer-Reviewed Original ResearchConceptsGlucose-lowering effectType 2 diabetesMetformin actionHepatic gluconeogenesisFirst-line therapyDosage of metforminRedox-dependent mechanismMechanism of actionMolecular mechanismsSafety profileMetformin inhibitsComplex I inhibitionMetformin concentrationsGlucose metabolismMetforminClinical settingPleotropic effectsDiscrepant effectsDiabetesAMPK activationCurrent literatureRelevant concentrationsI inhibitionRecent studiesRedox balance220-LB: Glucagon Promotes Hepatic Autophagy by AMPK-Mediated mTORC1 Inhibition
GALSGAARD K, WEWER ALBRECHTSEN N, HOLST J, SHULMAN G, PETERSEN K, NASIRI A, CLINE G, ZHANG X, LEE J, HUBBARD B. 220-LB: Glucagon Promotes Hepatic Autophagy by AMPK-Mediated mTORC1 Inhibition. Diabetes 2020, 69 DOI: 10.2337/db20-220-lb.Peer-Reviewed Original ResearchSpouse/partnerDohme Corp.Hepatic autophagyMerck SharpKidney diseaseNovo Nordisk A/SAMP kinaseGlucagon treatmentPlasma glucagon concentrationsAdvisory PanelKrebs-Henseleit bicarbonate bufferHepatic protein metabolismNational InstituteNovo Nordisk FoundationMarkers of autophagyHepatic glucose metabolismFasted male ratsProtein/amino acid metabolismGlucagon's roleGlucagon concentrationsGlucagon infusionMale ratsAwake miceNovo Nordisk A/S.Glucose metabolismMON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver
Sakuma I, Yokoyama M, Yamagata K, Hashimoto N, Nakayama A, Shulman G, Tanaka T. MON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver. Journal Of The Endocrine Society 2020, 4: mon-635. PMCID: PMC7207756, DOI: 10.1210/jendso/bvaa046.1557.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseForkhead box protein O1Iron metabolismFoxO1 nuclear exclusionOxidative stressFatty liver diseaseSerum ferritin levelsMouse liverHigh-fat dietType 2 diabetesPathogenesis of diabetesNovel therapeutic targetIron regulatory genesHepatic iron contentTreatment of diabetesHepG2 cellsBox protein O1Glucose intoleranceMost patientsFerritin levelsLiver diseaseClinical studiesGluconeogenesis activationFDXR expressionGlucose metabolismGlucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, Rabin-Court A, Wang Y, Peng L, Dufour S, Zhang Y, Zhang XM, Butrico GM, Toussaint K, Nozaki Y, Cline GW, Petersen KF, Nathanson MH, Ehrlich BE, Shulman GI. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 2020, 579: 279-283. PMID: 32132708, PMCID: PMC7101062, DOI: 10.1038/s41586-020-2074-6.Peer-Reviewed Original ResearchConceptsHepatic steatosisType 2Nonalcoholic fatty liver diseaseDiet-induced hepatic steatosisFatty liver diseasePlasma glucagon concentrationsHepatic adipose triglyceride lipaseHepatic acetyl-CoA contentHepatic glucose productionRatio of insulinHepatic glucose metabolismInositol triphosphate receptorAdipose triglyceride lipaseMitochondrial oxidationMitochondrial fat oxidationGlucose intoleranceLiver diseaseGlucagon concentrationsInsulin resistancePortal veinAcetyl-CoA contentHepatic lipolysisGlucagon biologyGlucose metabolismKnockout mice
2018
Metabolic Inflexibility Revisited—Muscle Substrate Oxidation Is Mechanistically Dissociated from Muscle Insulin Resistance in Rats
SONG J, PERRY R, MUNK A, ZHANG Y, ZHANG D, SHULMAN G. Metabolic Inflexibility Revisited—Muscle Substrate Oxidation Is Mechanistically Dissociated from Muscle Insulin Resistance in Rats. Diabetes 2018, 67 DOI: 10.2337/db18-240-lb.Peer-Reviewed Original ResearchInsulin-resistant ratsMuscle insulin resistanceHigh-fat dietResistant ratsInsulin resistanceNormal ratsSoleus muscleLipid-induced muscle insulin resistanceSkeletal muscle insulin resistancePeripheral glucose metabolismHyperinsulinemic-euglycemic clampPathogenesis of obesityMuscle insulin sensitivityGlucose oxidationMuscle glucose transportAcute infusionPyruvate dehydrogenase fluxSubstrate oxidationFat dietMuscle glucoseInsulin sensitivityAcute modulationGlucose metabolismFat oxidationTissue-specific indices
2010
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
Ayala JE, Consortium F, Samuel V, Morton G, Obici S, Croniger C, Shulman G, Wasserman D, McGuinness O. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 2010, 3: 525-534. PMID: 20713647, PMCID: PMC2938392, DOI: 10.1242/dmm.006239.Peer-Reviewed Original Research
2004
Insulin Resistance in NAFLD: Potential Mechanisms and Therapies
Samuel V, Shulman G. Insulin Resistance in NAFLD: Potential Mechanisms and Therapies. 2004, 38-54. DOI: 10.1002/9780470987438.ch4.Peer-Reviewed Original Research
2003
Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance. Science 2003, 300: 1140-1142. PMID: 12750520, PMCID: PMC3004429, DOI: 10.1126/science.1082889.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAdolescentAdultAgedAged, 80 and overAgingBlood GlucoseBody Mass IndexFemaleHumansInsulinInsulin ResistanceLiverMaleMiddle AgedMitochondriaMitochondrial DiseasesMuscle, SkeletalNuclear Magnetic Resonance, BiomolecularOxidation-ReductionOxygen ConsumptionPhosphorylationTriglyceridesConceptsInsulin resistanceInsulin-stimulated muscle glucose metabolismType 2 diabetesMuscle glucose metabolismLean body massElderly study participantsAge-associated declineMitochondrial function contributesFat massFat accumulationGlucose metabolismYoung controlsStudy participantsLiver tissueFunction contributesMitochondrial dysfunctionYounger participantsPossible roleMitochondrial oxidativeBody massMagnetic resonance spectroscopyParticipantsDiabetesDysfunctionPathogenesis
2001
NMR Spectroscopy in β Cell Engineering and Islet Transplantation
PAPAS K, COLTON C, GOUNARIDES J, ROOS E, JAREMA M, SHAPIRO M, CHENG L, CLINE G, SHULMAN G, WU H, BONNER‐WEIR S, WEIR G. NMR Spectroscopy in β Cell Engineering and Islet Transplantation. Annals Of The New York Academy Of Sciences 2001, 944: 96-119. PMID: 11797699, DOI: 10.1111/j.1749-6632.2001.tb03826.x.Peer-Reviewed Original ResearchConceptsIslet transplantationGlucose metabolismBeta cellsLong-term complicationsIrreversible damageTerm complicationsOxidative glucose metabolismAcute ischemiaTransplantationVivo efficacyHuman isletsIslet preparationsC-myc oncogeneSecreting tissueCell damageSuch exposureGenetic alterationsBcl-2Overnight incubationIslet transportationIsletsSyntaxin 4 heterozygous knockout mice develop muscle insulin resistance
Yang C, Coker K, Kim J, Mora S, Thurmond D, Davis A, Yang B, Williamson R, Shulman G, Pessin J. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. Journal Of Clinical Investigation 2001, 107: 1311-1318. PMID: 11375421, PMCID: PMC209300, DOI: 10.1172/jci12274.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose Tissue, BrownAnimalsBiological TransportGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4GlycogenGlycolysisHeterozygoteInsulin ResistanceLiverMembrane ProteinsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalQa-SNARE ProteinsConceptsHeterozygous knockout miceInsulin-stimulated glucose uptakeGlucose uptakeKnockout miceNormal insulin-stimulated glucose uptakeWhole-body glucose uptakeHyperinsulinemic-euglycemic clamp procedureInsulin-stimulated glucose metabolismInsulin-stimulated GLUT4 translocationSkeletal muscleGLUT4 vesicle traffickingImpaired glucose toleranceMuscle insulin resistanceEarly embryonic lethalitySkeletal muscle glucose transportMuscle glucose transportCritical physiological roleGlucose toleranceInsulin resistanceClamp procedureVesicle traffickingSyntaxin 4Embryonic lethalityGlucose metabolismAnimal models
2000
Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *
Previs S, Withers D, Ren J, White M, Shulman G. Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *. Journal Of Biological Chemistry 2000, 275: 38990-38994. PMID: 10995761, DOI: 10.1074/jbc.m006490200.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsCarbohydrate MetabolismFatty Acids, NonesterifiedFood DeprivationGas Chromatography-Mass SpectrometryGlucoseGlycerolInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsLipid MetabolismLiverMaleMiceMusclesMutationPhenotypePhosphoproteinsRadioimmunoassayTime FactorsConceptsLipid metabolismInsulin resistanceIRS-2Glucose utilizationPlasma free fatty acid concentrationsWhole-body glucose utilizationGlycerol turnoverFree fatty acid concentrationsMarked insulin resistancePeripheral glucose metabolismPeripheral glucose utilizationHyperinsulinemic-euglycemic clampEndogenous glucose productionIRS-1Effect of insulinHepatic glycogen synthesisWT miceFatty acid concentrationsInsulin receptor substrateGlucose metabolismFasted miceAdipose tissueReduced suppressionGlucose productionMicePersistent Changes in Myocardial Glucose Metabolism In Vivo During Reperfusion of a Limited-Duration Coronary Occlusion
McNulty P, Jagasia D, Cline G, Ng C, Whiting J, Garg P, Shulman G, Soufer R. Persistent Changes in Myocardial Glucose Metabolism In Vivo During Reperfusion of a Limited-Duration Coronary Occlusion. Circulation 2000, 101: 917-922. PMID: 10694532, DOI: 10.1161/01.cir.101.8.917.Peer-Reviewed Original ResearchConceptsCoronary occlusionGlucose metabolismPostischemic stunningAnterolateral left ventricleHeart glucose metabolismCoronary artery occlusionRegional glucose metabolismMyocardial glucose metabolismRegional myocardial ischemiaRegional mechanical functionRapid reperfusionReversible coronary occlusionArtery occlusionMyocardial ischemiaIntact ratsPreferential shuntingBlood flowReperfusionTracer uptakeLeft ventricleGlycogen depletionMetabolic signaturesOcclusionPersistent changesSustained changes
1999
Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes
Cline G, Petersen K, Krssak M, Shen J, Hundal R, Trajanoski Z, Inzucchi S, Dresner A, Rothman D, Shulman G. Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes. New England Journal Of Medicine 1999, 341: 240-246. PMID: 10413736, DOI: 10.1056/nejm199907223410404.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisType 2 diabetes mellitusConcentrations of insulinNormal subjectsDiabetes mellitusGlucose metabolismGlycogen synthesisGlucose concentrationWhole-body glucose metabolismInsulin-stimulated muscle glycogen synthesisIntracellular glucose concentrationType 2 diabetesPlasma insulin concentrationGlucose transportImpaired glucose transportInterstitial fluid glucose concentrationsOpen-flow microperfusionIntramuscular glucoseInterstitial fluidGlucose-6-phosphate concentrationInsulin resistanceVivo microdialysisInsulin concentrationsHyperinsulinemic conditionsPatientsCellular mechanisms of insulin resistance in humans
Shulman G. Cellular mechanisms of insulin resistance in humans. The American Journal Of Cardiology 1999, 84: 3-10. PMID: 10418851, DOI: 10.1016/s0002-9149(99)00350-1.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin resistanceMuscle glycogen synthesisFree fatty acidsGlucose productionHepatic gluconeogenesisInsulin-stimulated glucose metabolismInsulin-stimulated muscle glycogen synthesisBetter glucose controlCellular mechanismsHepatic glucose productionLiver glycogen concentrationGlycogen synthesisPathophysiologic defectsCombination therapyGlucose controlInsulin secretionInsulin receptor substrateHyperinsulinemic clampingPeripheral tissuesGlucose clearanceFFA levelsGlucose metabolismThiazolidinedione troglitazoneDiabetesEffect of AMPK activation on muscle glucose metabolism in conscious rats
Bergeron R, Russell R, Young L, Ren J, Marcucci M, Lee A, Shulman G. Effect of AMPK activation on muscle glucose metabolism in conscious rats. American Journal Of Physiology 1999, 276: e938-e944. PMID: 10329989, DOI: 10.1152/ajpendo.1999.276.5.e938.Peer-Reviewed Original ResearchMeSH KeywordsAminoimidazole CarboxamideAMP-Activated Protein KinasesAndrostadienesAnimalsBiological TransportDeoxyglucoseElectric StimulationEnzyme ActivationEnzyme InhibitorsIn Vitro TechniquesInsulinMaleMultienzyme ComplexesMuscle ContractionMuscle, SkeletalPhosphatidylinositol 3-KinasesProtein Serine-Threonine KinasesRatsRats, Sprague-DawleyRibonucleotidesTritiumWortmanninConceptsMuscle glucose metabolismGlucose transport activityActivation of AMPKGlucose uptakeGlucose metabolismTransport activitySkeletal muscle glucose metabolismExercise-induced increaseSkeletal muscle glucose transport activityBasal rateAbsence of wortmanninAdenosine receptor antagonistAdditive effectProtein kinase activationVariable infusionConscious ratsReceptor antagonistSaline infusionAwake ratsMedial gastrocnemiusElectrical stimulationEpitrochlearis musclesCellular pathwaysAMPK activationKinase activation
1998
Effect of insulin on glycerol production in obese adolescents
Robinson C, Tamborlane W, Maggs D, Enoksson S, Sherwin R, Silver D, Shulman G, Caprio S. Effect of insulin on glycerol production in obese adolescents. American Journal Of Physiology 1998, 274: e737-e743. PMID: 9575836, DOI: 10.1152/ajpendo.1998.274.4.e737.Peer-Reviewed Original ResearchConceptsNet lipid oxidationObese adolescentsLean adultsGlycerol turnoverTwo-step euglycemic-hyperinsulinemic clampFree fatty acid concentrationsBody fat massEuglycemic hyperinsulinemic clampSensitivity of adipocytesEffect of insulinAction of insulinObese groupLean subjectsInsulin resistanceAdipose massPlasma insulinFatty acid concentrationsAdolescent obesityFat massLean adolescentsImpaired stimulationPhysiological incrementsFFA levelsGlucose metabolismIndirect calorimetry
1997
Effects of insulin-like growth factor I on glucose metabolism in rats with liver cirrhosis
Petersen K, Jacob R, West A, Sherwin R, Shulman G. Effects of insulin-like growth factor I on glucose metabolism in rats with liver cirrhosis. American Journal Of Physiology 1997, 273: e1189-e1193. PMID: 9435535, DOI: 10.1152/ajpendo.1997.273.6.e1189.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisInsulin-like growth factor ICirrhotic ratsGrowth factor IGlucose metabolismLiver cirrhosisGlycogen synthesisFactor IInsulin-stimulated muscle glycogen synthesisIGF-I therapyPeripheral glucose metabolismWhole-body glucose turnoverEndogenous glucose productionAbility of IGFEuglycemic clampInsulin resistanceControl ratsAwake ratsCirrhosisDiminished suppressionControl groupIGFRatsGlucose productionGlucose turnover