2024
The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity
Laughlin M, McIndoe R, Adams S, Araiza R, Ayala J, Kennedy L, Lanoue L, Lantier L, Macy J, Malabanan E, McGuinness O, Perry R, Port D, Qi N, Elias C, Shulman G, Wasserman D, Lloyd K. The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity. Mammalian Genome 2024, 35: 485-496. PMID: 39191872, PMCID: PMC11522164, DOI: 10.1007/s00335-024-10067-y.Peer-Reviewed Original ResearchMouse Metabolic Phenotyping CentersMouse model of diabetesModels of diabetesNational Institutes of HealthNational Institute for DiabetesDigestive and Kidney DiseasesBehavioral phenotyping testsRenal functionProcedure in vivoFood intakeIn vivo characterizationMouse modelHeterogeneity of diabetesKidney diseaseBody compositionPhenotyping CentersInstitutes of HealthMiceObesityDiabetesPhenotypic testsWhole-body carbohydrateInsulin actionLipid metabolismLiving mice
2023
FRI032 Cellular Insights Into Metabolically Healthy And Unhealthy Obesity
Petersen M, Smith G, Yu J, Barve R, Yoshino J, Shulman G, Klein S. FRI032 Cellular Insights Into Metabolically Healthy And Unhealthy Obesity. Journal Of The Endocrine Society 2023, 7: bvad114.043. PMCID: PMC10555440, DOI: 10.1210/jendso/bvad114.043.Peer-Reviewed Original ResearchAbdominal subcutaneous adipose tissueWhole-body insulin sensitivityInsulin sensitivityMUO groupMuscle ceramide contentCeramide contentAdipose tissueGreater whole-body insulin sensitivityPlasma C-peptide concentrationC-peptide concentrationsAdverse metabolic effectsSubcutaneous adipose tissueExpression of genesSkeletal muscle expressionMitochondrial content/functionHealthy obesityMitochondrial structure/functionSkeletal muscle diacylglycerolUnhealthy obesityExtracellular matrix remodelingExcess adiposityMHL groupMetabolic effectsMuscle diacylglycerolInsulin actionMAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis.
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler R, Accili D, Shulman G, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023, 72: 1781-1794. PMID: 37725942, PMCID: PMC10658066, DOI: 10.2337/db23-0314.Peer-Reviewed Original ResearchConceptsIR endocytosisInsulin receptor endocytosisCell division regulatorsInsulin receptorProlongs insulin actionReceptor endocytosisTranscriptomic profilesInsulin stimulationEndocytosisMetabolic homeostasisCell surfaceGenetic ablationMetabolic functionsInsulin actionP31cometMad2BubR1DisruptionSignalingRegulatorHomeostasisAdipose tissueInteractionHepatic fat accumulationMetabolism
2021
Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCI Insight 2021, 6: e139946. PMID: 33411692, PMCID: PMC7934919, DOI: 10.1172/jci.insight.139946.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin actionAdipose tissue insulin resistanceTissue insulin resistanceWT control miceHyperinsulinemic-euglycemic clampShort-term HFDTissue insulin actionAdipose tissue insulin actionDiet-fed ratsPotential therapeutic targetHFD feedingControl miceInsulin sensitivityTherapeutic targetLipolysis suppressionImpairs insulinHFDPKCε activationGlucose uptakeΕ activationMiceDiacylglycerol accumulationRecent evidenceProtein kinase C
2019
266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance
LYU K, ZHANG Y, ZHANG D, KAHN M, NOZAKI Y, BHANOT S, BOGAN J, CLINE G, SAMUEL V, SHULMAN G. 266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance. Diabetes 2019, 68 DOI: 10.2337/db19-266-or.Peer-Reviewed Original ResearchHepatic insulin resistanceInsulin resistanceExogenous fatty acidsInsulin actionLipid dropletsHepatic ceramide contentHyperinsulinemic-euglycemic clampHepatic insulin actionBioactive lipid speciesHepatic glucose productionChow-fed ratsHepatic diacylglycerol contentAdvisory PanelFatty acidsHepatic steatosisImpaired suppressionSingle doseSpouse/partnerGlucose productionPKCε activationJanssen ResearchAcute knockdownCeramide contentNational InstituteReceptor kinase activation
2018
Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance In Vivo
LYU K, ZHANG D, NOZAKI Y, ZHANG Y, BHANOT S, CLINE G, SAMUEL V, SHULMAN G. Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance In Vivo. Diabetes 2018, 67 DOI: 10.2337/db18-243-lb.Peer-Reviewed Original ResearchHepatic insulin resistanceLipid-induced hepatic insulin resistanceDiglyceride acyltransferase 2Hepatic DAG contentInsulin resistanceHepatic insulin sensitivityInsulin sensitivityImpaired insulin-mediated suppressionActivation/translocationDGAT2 inhibitionAntisense oligonucleotideRegular chow dietInsulin-mediated suppressionHepatic insulin actionHepatic glucose productionInsulin receptor kinaseDAG contentChow dietASO treatmentIonis PharmaceuticalsInsulin actionGlucose productionPKCε activationSREBP-1cGilead Sciences
2001
Prevention of fat-induced insulin resistance by salicylate
Kim J, Kim Y, Fillmore J, Chen Y, Moore I, Lee J, Yuan M, Li Z, Karin M, Perret P, Shoelson S, Shulman G. Prevention of fat-induced insulin resistance by salicylate. Journal Of Clinical Investigation 2001, 108: 437-446. PMID: 11489937, PMCID: PMC209353, DOI: 10.1172/jci11559.Peer-Reviewed Original ResearchConceptsType 2 diabetesLipid infusionInsulin resistanceGlucose uptakeInsulin actionWhole-body glucose uptakeFat-induced insulin resistanceSkeletal muscleHigh-dose salicylatesHyperinsulinemic-euglycemic clampWild-type miceInsulin-stimulated glucose uptakeSkeletal muscle insulinIRS-1-associated PISerine kinase cascadeLipid-induced effectsAwake ratsAwake miceKnockout miceMuscle insulinInfusionTherapeutic agentsSalicylate actionKinase cascadeIKK betaGlucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
Kim J, Zisman A, Fillmore J, Peroni O, Kotani K, Perret P, Zong H, Dong J, Kahn C, Kahn B, Shulman G. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal Of Clinical Investigation 2001, 108: 153-160. PMID: 11435467, PMCID: PMC353719, DOI: 10.1172/jci10294.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAge of OnsetAnimalsDepression, ChemicalDiabetes Mellitus, Type 2Disease Models, AnimalGlucoseGlucose Transporter Type 4HyperglycemiaInsulinInsulin Infusion SystemsInsulin ResistanceKidney TubulesLiverMaleMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPhlorhizinPrediabetic StateProtein TransportConceptsDevelopment of diabetesMuscle glucose uptakeKO miceHepatic glucose productionInsulin-stimulated glucose uptakeGlucose toxicityMuscle-specific inactivationGlucose uptakeAdipose tissueInsulin-stimulated muscle glucose uptakeGlucose productionWhole-body glucose uptakeSkeletal muscle glucose uptakeAdipose tissue glucose uptakeSuppress hepatic glucose productionTissue glucose uptakeHyperinsulinemic-euglycemic clampMuscle glucose transportInsulin resistanceTransgenic miceDiabetes phenotypeInsulin actionPhloridzin treatmentInsulin's abilityDiabetesTissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
Kim J, Fillmore J, Chen Y, Yu C, Moore I, Pypaert M, Lutz E, Kako Y, Velez-Carrasco W, Goldberg I, Breslow J, Shulman G. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 7522-7527. PMID: 11390966, PMCID: PMC34701, DOI: 10.1073/pnas.121164498.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseFatty Acids, NonesterifiedGlucagonGlucoseGlucose Clamp TechniqueGlucose Tolerance TestHeterozygoteInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLeptinLipoprotein LipaseLiverMiceMice, KnockoutMice, TransgenicMuscle, SkeletalOrgan SpecificityPhosphatidylinositol 3-KinasesPhosphoproteinsSignal TransductionTriglyceridesConceptsInsulin resistanceFatty acid-derived metabolitesInsulin actionTriglyceride contentType 2 diabetes mellitusInsulin activationLipoprotein lipaseInsulin receptor substrate-1-associated phosphatidylinositolMuscle triglyceride contentSkeletal muscleTissue-specific insulin resistanceLiver triglyceride contentAdipocyte-derived hormoneHyperinsulinemic-euglycemic clampEndogenous glucose productionLiver-specific overexpressionTissue-specific overexpressionInsulin-stimulated glucose uptakeDiabetes mellitusTissue-specific increaseTransgenic miceGlucose productionFat metabolismGlucose uptakeInsulinInsulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ)
Cho H, Mu J, Kim J, Thorvaldsen J, Chu Q, Crenshaw E, Kaestner K, Bartolomei M, Shulman G, Birnbaum M. Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ). Science 2001, 292: 1728-1731. PMID: 11387480, DOI: 10.1126/science.292.5522.1728.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseDeoxyglucoseDiabetes Mellitus, Type 2FemaleGene TargetingGlucoseGlucose Clamp TechniqueGlucose Tolerance TestHomeostasisInsulinInsulin ResistanceIslets of LangerhansLiverMaleMiceMice, Inbred C57BLMice, TransgenicMuscle, SkeletalProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionConceptsSerine-threonine protein kinase AktProtein kinase Akt2Protein kinase AktProtein kinase B.Activation of phosphatidylinositolEssential genesKinase Akt2Kinase AktAbility of insulinGlucose homeostasisNormal glucose homeostasisAkt2Critical initial stepEarly eventsSkeletal muscleHomeostasisInsulin actionMice LackingInsulin responsivenessInitial stepActivationInsulin resistancePhosphatidylinositolBlood glucoseGenesAdipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
Abel E, Peroni O, Kim J, Kim Y, Boss O, Hadro E, Minnemann T, Shulman G, Kahn B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409: 729-733. PMID: 11217863, DOI: 10.1038/35055575.Peer-Reviewed Original ResearchConceptsInsulin-stimulated glucose uptakeType 2 diabetesInsulin resistanceGlucose uptakeAdipose tissueGLUT4 expressionInsulin-resistant statesDownregulation of GLUT4Glucose intoleranceGlucose transportAdipose massIntracellular storage sitesGlucose homeostasisInsulin actionDiabetesPhosphoinositide-3-OH kinaseImpaired activationSkeletal muscleMuscleMicePlasma membrane4Early defectsLiverMain siteAdipocytes
2000
Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice
Klaman L, Boss O, Peroni O, Kim J, Martino J, Zabolotny J, Moghal N, Lubkin M, Kim Y, Sharpe A, Stricker-Krongrad A, Shulman G, Neel B, Kahn B. Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice. Molecular And Cellular Biology 2000, 20: 5479-5489. PMID: 10891488, PMCID: PMC85999, DOI: 10.1128/mcb.20.15.5479-5489.2000.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBody WeightCarrier ProteinsEnergy MetabolismFemaleGlucoseGlucose Tolerance TestHomeostasisHyperinsulinismInsulin ResistanceIon ChannelsLeptinMaleMembrane ProteinsMembrane Transport ProteinsMiceMice, Inbred C57BLMice, Mutant StrainsMitochondrial ProteinsMuscle, SkeletalProtein Tyrosine Phosphatase, Non-Receptor Type 1Protein Tyrosine PhosphatasesProteinsRNA, MessengerUncoupling Protein 1Uncoupling Protein 2Uncoupling Protein 3ConceptsProtein tyrosine phosphatasePTP-1BMajor protein tyrosine phosphataseProtein tyrosine phosphatase 1BSignal transduction pathwaysTargeted gene disruptionInsulin-stimulated glucose uptakeGene disruptionTransduction pathwaysFat cell massPhosphatase 1BMajor regulatorProtein mRNA expressionCell massNull miceSkeletal muscleDeficient miceGlucose uptakeBasal metabolic rateInsulin actionMetabolic ratePhosphataseFat storesDiet-induced obesityAdipocyte numberLoss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction
Michael M, Kulkarni R, Postic C, Previs S, Shulman G, Magnuson M, Kahn C. Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Molecular Cell 2000, 6: 87-97. PMID: 10949030, DOI: 10.1016/s1097-2765(05)00015-8.Peer-Reviewed Original ResearchConceptsInsulin resistanceGlucose homeostasisInsulin receptor knockout miceLiver-specific insulin receptor knockout miceDirect insulin actionNormal hepatic functionProgressive hepatic dysfunctionReceptor knockout miceSevere glucose intoleranceSevere insulin resistanceHepatic glucose productionFailure of insulinLoss of insulinHepatic gene expressionHepatic dysfunctionGlucose intoleranceMarked hyperinsulinemiaCre-loxP systemInsulin clearanceHepatic functionInsulin secretionInsulin receptor geneKnockout miceInsulin actionGlucose productionRedistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle
Kim J, Michael M, Previs S, Peroni O, Mauvais-Jarvis F, Neschen S, Kahn B, Kahn C, Shulman G. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal Of Clinical Investigation 2000, 105: 1791-1797. PMID: 10862794, PMCID: PMC378504, DOI: 10.1172/jci8305.Peer-Reviewed Original ResearchConceptsInsulin resistanceSelective insulin resistanceMIRKO miceType 2 diabetesHyperinsulinemic-euglycemic conditionsInsulin-stimulated muscle glucose transportMuscle glucose transportMuscle-specific inactivationPrediabetic syndromeGlucose transportControl miceFat massInsulin receptor geneInsulin actionMiceRedistribution of substratesSkeletal muscleImportant associationPotential mechanismsReceptor geneObesityGlycogen synthesisTissueMuscleAdiposityMechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice*
Kim J, Gavrilova O, Chen Y, Reitman M, Shulman G. Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice*. Journal Of Biological Chemistry 2000, 275: 8456-8460. PMID: 10722680, DOI: 10.1074/jbc.275.12.8456.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin resistanceFatless miceInsulin actionTriglyceride contentA-ZIP/FDevelopment of diabetesLiver triglyceride contentHyperinsulinemic-euglycemic clampAccumulation of triglyceridesMuscle/liverWild-type littermatesInsulin receptor substrate-1Receptor substrate-1Partitioning of fatSubsequent impairmentDiabetesFat metabolismMiceFat tissueLiverInsulin signalingMuscleLatter tissueSubstrate-1
1998
Disruption of IRS-2 causes type 2 diabetes in mice
Withers D, Gutierrez J, Towery H, Burks D, Ren J, Previs S, Zhang Y, Bernal D, Pons S, Shulman G, Bonner-Weir S, White M. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998, 391: 900-904. PMID: 9495343, DOI: 10.1038/36116.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseCloning, MolecularDiabetes Mellitus, Type 2FemaleGene TargetingHumansInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansLiverMaleMiceMice, Inbred C57BLMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationReceptor, InsulinRecombination, GeneticSignal TransductionConceptsType 2 diabetesInsulin resistanceHuman type 2 diabetesPancreatic β-cell functionInsulin secretion increasesSingle molecular abnormalityΒ-cell compensationIRS-2-deficient miceΒ-cell functionHuman type 2Insulin secretionInsulin receptor substrateGlucose homeostasisSecretion increasesInsulin actionType 2DiabetesMolecular abnormalitiesProgressive deteriorationSkeletal muscleIRS-2Insulin signalingIRS-1Mild resistanceMice
1990
Effect of metformin treatment on insulin action in diabetic rats: In vivo and in vitro correlations
Rossetti L, DeFronzo R, Gherzi R, Stein P, Andraghetti G, Falzetti G, Shulman G, Klein-Robbenhaar E, Cordera R. Effect of metformin treatment on insulin action in diabetic rats: In vivo and in vitro correlations. Metabolism 1990, 39: 425-435. PMID: 2157941, DOI: 10.1016/0026-0495(90)90259-f.Peer-Reviewed Original ResearchConceptsInsulin receptor tyrosine kinase activityDiabetic ratsMetformin treatmentReceptor tyrosine kinase activityTyrosine kinase activitySupernormal levelsGlucose disposalInsulin-mediated whole-body glucose disposalTotal body insulin-mediated glucose disposalInsulin actionNeonatal streptozotocin diabetic ratsTotal body glucose uptakeInsulin-mediated glucose disposalWhole-body glucose disposalGlucose uptakeDeficient insulin responseNormalized glucose toleranceInsulin clamp studiesStreptozotocin-diabetic ratsVivo insulin actionHepatic glucose productionMuscle glycogen synthesisGlycogen synthesisSynthetic rateGlucose toleranceQuantitation of Muscle Glycogen Synthesis in Normal Subjects and Subjects with Non-Insulin-Dependent Diabetes by 13C Nuclear Magnetic Resonance Spectroscopy
Shulman G, Rothman D, Jue T, Stein P, DeFronzo R, Shulman R. Quantitation of Muscle Glycogen Synthesis in Normal Subjects and Subjects with Non-Insulin-Dependent Diabetes by 13C Nuclear Magnetic Resonance Spectroscopy. New England Journal Of Medicine 1990, 322: 223-228. PMID: 2403659, DOI: 10.1056/nejm199001253220403.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisNonoxidative glucose metabolismDiabetic subjectsNormal subjectsGlucose metabolismMuscle glycogenGlycogen synthesisHyperglycemic-hyperinsulinemic clamp studiesTotal body glucose uptakeWeight-matched healthy subjectsNon-insulin dependent diabetesSteady-state plasma concentrationsGlucose uptakeMean glucose uptakeDependent diabetes mellitusDiabetes mellitusInsulin resistanceGlucose disposalPlasma concentrationsHealthy subjectsStudy groupClamp studiesGastrocnemius muscleInsulin actionMean rate