Featured Publications
Genomically Recoded Organisms Expand Biological Functions
Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ. Genomically Recoded Organisms Expand Biological Functions. Science 2013, 342: 357-360. PMID: 24136966, PMCID: PMC4924538, DOI: 10.1126/science.1241459.Peer-Reviewed Original ResearchConceptsNew genetic codesRelease factor 1UAG stop codonNonstandard amino acidsEscherichia coli MG1655UAA codonGenetic codeColi MG1655Biological functionsStop codonChemical diversityT7 bacteriophageAmino acidsFactor 1CodonMG1655OrganismsProteinDiversityDeletionBacteriophagesViral resistanceTranslation functionGROVivo
2023
System‐wide optimization of an orthogonal translation system with enhanced biological tolerance
Mohler K, Moen J, Rogulina S, Rinehart J. System‐wide optimization of an orthogonal translation system with enhanced biological tolerance. Molecular Systems Biology 2023, 19: msb202110591. PMID: 37477096, PMCID: PMC10407733, DOI: 10.15252/msb.202110591.Peer-Reviewed Original ResearchConceptsOrthogonal translation systemHost interactionsNon-standard amino acidsPost-translational modificationsSystems-level biologyStress response activationTranslation systemSynthetic biological systemsCellular physiologyProtein phosphorylationOTS performanceHost physiologyCellular environmentAmino acidsCellular mechanismsDeleterious interactionsResponse activationBiological systemsPhysiologyOTS developmentUnparalleled accessPhosphorylationHost toxicityBiologyInteraction
2020
The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation
Han N, Bullwinkle T, Loeb K, Faull K, Mohler K, Rinehart J, Ibba M. The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. Journal Of Biological Chemistry 2020, 295: 1402-1410. DOI: 10.1016/s0021-9258(17)49898-x.Peer-Reviewed Original ResearchAmino acid activationSerine codonsProtein synthesisHuman protein extractsHuman seryl-tRNA synthetaseAminoacyl-tRNA synthetaseSeryl-tRNA synthetaseAmyotrophic lateral sclerosisAlanyl-tRNA synthetaseN-methylaminoNonproteinogenic amino acidsCotranslational incorporationTRNA aminoacylationAlzheimer's diseaseProtein extractsBiochemical assaysAmino acidsExchange assayBMAAAcid activationSynthetaseCodonAminoacylationNeurodegenerative diseasesMultiple different mechanisms
2015
Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids
Amiram M, Haimovich AD, Fan C, Wang YS, Aerni HR, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Söll D, Rinehart J, Isaacs FJ. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature Biotechnology 2015, 33: 1272-1279. PMID: 26571098, PMCID: PMC4784704, DOI: 10.1038/nbt.3372.Peer-Reviewed Original Research
2006
Saccharomyces cerevisiae imports the cytosolic pathway for Gln‐tRNA synthesis into the mitochondrion
Krett B, Rinehart J, Rubio M, Alfonzo J, Söll D. Saccharomyces cerevisiae imports the cytosolic pathway for Gln‐tRNA synthesis into the mitochondrion. The FASEB Journal 2006, 20: a500-a500. DOI: 10.1096/fasebj.20.4.a500-b.Peer-Reviewed Original ResearchTransamidation pathwayMitochondrial translationGln-tRNAOrganellar protein synthesisYeast mitochondrial DNAGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesAminoacyl-tRNA formationImport mechanismMitochondrial localizationMitochondrial DNAProtein biosynthesisMost bacteriaCytoplasmic componentsAlternate functionsCytosolic pathwayProtein synthesisAmino acidsEssential processMitochondriaTRNAPathwayEukaryotesGlnRArchaea
2001
Genomics and the evolution of aminoacyl-tRNA synthesis.
Ruan B, Ahel I, Ambrogelly A, Becker H, Bunjun S, Feng L, Tumbula-Hansen D, Ibba M, Korencic D, Kobayashi H, Jacquin-Becker C, Mejlhede N, Min B, Raczniak G, Rinehart J, Stathopoulos C, Li T, Söll D. Genomics and the evolution of aminoacyl-tRNA synthesis. Acta Biochimica Polonica 2001, 48: 313-21. PMID: 11732603, DOI: 10.18388/abp.2001_3917.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisAminoacyl-tRNA synthetasesTransfer RNAsAmino acidsMessenger RNAGenetic informationContemporary aminoacyl-tRNA synthetasesDirect protein synthesisNon-canonical routesEvolutionary diversityEvolutionary divergenceCys-tRNANascent polypeptidesRibosome movesAsn-tRNAGln-tRNAWhole genomeAppropriate amino acidsTRNA anticodonSubstrate specificityLys-tRNATrinucleotide codonsNext codonUnexpected levelProtein synthesis