2021
SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes
Pawlica P, Yario TA, White S, Wang J, Moss WN, Hui P, Vinetz JM, Steitz JA. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2116668118. PMID: 34903581, PMCID: PMC8719879, DOI: 10.1073/pnas.2116668118.Peer-Reviewed Original ResearchConceptsBasic leucine zipper ATF-like transcription factor 2Small RNAsHuman lung-derived cell linesSARS-CoV-2 infectionLung-derived cell linesRNA interference (RNAi) pathwayHost miRNA levelsTranscription factor 2Cellular machineryInterference pathwayDrosha proteinSARS-CoV-2-infected individualsHost genesSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Host miRNAsPutative targetsSyndrome coronavirus 2SARS-CoV-2MiRNA levelsFactor 2Cell linesNasopharyngeal swabsCoronavirus 2
1998
Modification of U6 Spliceosomal RNA Is Guided by Other Small RNAs
Tycowski K, You Z, Graham P, Steitz J. Modification of U6 Spliceosomal RNA Is Guided by Other Small RNAs. Molecular Cell 1998, 2: 629-638. PMID: 9844635, DOI: 10.1016/s1097-2765(00)80161-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell FractionationCell LineCell NucleolusChromosomal Proteins, Non-HistoneDimerizationHeLa CellsHumansMethylationMiceMolecular Sequence DataNucleic Acid ConformationOligodeoxyribonucleotides, AntisenseOocytesPrecipitin TestsRibonuclease HRNA, Ribosomal, 28SRNA, Small NuclearSpliceosomesXenopus laevis
1994
Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation
Tycowski K, Shu M, Steitz J. Requirement for Intron-Encoded U22 Small Nucleolar RNA in 18S Ribosomal RNA Maturation. Science 1994, 266: 1558-1561. PMID: 7985025, DOI: 10.1126/science.7985025.Peer-Reviewed Original ResearchConceptsRibosomal RNASmall RNAsProtein-coding gene transcriptsRibosomal RNA maturationSmall nucleolar RNAsRNA maturationVertebrate cellsCellular functionsNucleolar RNAsHost genesIntron fragmentGene transcriptsRNAXenopus oocytesU22IntronsGenesTranscriptsNucleoliOocytesMaturationTargetingCellsFragmentsDepletion
1993
The Cellular RNA-Binding Protein EAP Recognizes a Conserved Stem-Loop in the Epstein-Barr Virus Small RNA EBER 1
Toczyski D, Steitz J. The Cellular RNA-Binding Protein EAP Recognizes a Conserved Stem-Loop in the Epstein-Barr Virus Small RNA EBER 1. Molecular And Cellular Biology 1993, 13: 703-710. DOI: 10.1128/mcb.13.1.703-710.1993.Peer-Reviewed Original ResearchSmall RNAsCellular RNA-binding proteinsConserved stem loopRNA-binding proteinDetailed mutational analysisStem-loop structureSequence-specific mannerRNase protection experimentsDouble-stranded regionsDeletion mutantsEBER-1Mutational analysisStem loopFusion proteinProtection experimentsViral proteinsRNAProteinEpstein-Barr virus small RNAsEpstein-Barr virusBindingMutantsHerpesvirus papioNucleotidesHairpinThe cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.
Toczyski DP, Steitz JA. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1. Molecular And Cellular Biology 1993, 13: 703-710. PMID: 8380232, PMCID: PMC358948, DOI: 10.1128/mcb.13.1.703.Peer-Reviewed Original ResearchConceptsCellular RNA-binding proteinsRNA-binding proteinDetailed mutational analysisStem-loop structureSequence-specific mannerRNase protection experimentsEpstein‐Barr virus small RNA EBER‐1Double-stranded regionsSmall RNAsDeletion mutantsEBER-1Mutational analysisFusion proteinProtection experimentsViral proteinsProteinRNAEpstein-Barr virusBindingMutantsHerpesvirus papioNucleotidesHairpinAntibodiesCells
1992
Interactions of Small Nuclear RNA's with Precursor Messenger RNA During in Vitro Splicing
Wassarman D, Steitz J. Interactions of Small Nuclear RNA's with Precursor Messenger RNA During in Vitro Splicing. Science 1992, 257: 1918-1925. PMID: 1411506, DOI: 10.1126/science.1411506.Peer-Reviewed Original ResearchConceptsPrecursor messenger RNASmall nuclear RNANuclear RNASplice siteMessenger RNAPrecursor messenger RNA splicingU6 small nuclear RNAMessenger RNA splicingHeLa nuclear extractsExcised lariat intronSmall RNAsRNA splicingLariat intronIntron sequencesVitro splicingNuclear extractsCleavage eventsSplicingRNAU5Branch siteFirst cleavage eventU6U2U1Viral small nuclear ribonucleoproteins bind a protein implicated in messenger RNA destabilization.
Myer VE, Lee SI, Steitz JA. Viral small nuclear ribonucleoproteins bind a protein implicated in messenger RNA destabilization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 1296-1300. PMID: 1311093, PMCID: PMC48436, DOI: 10.1073/pnas.89.4.1296.Peer-Reviewed Original ResearchConceptsSmall nuclear ribonucleoproteinNuclear ribonucleoproteinCertain cellular mRNAsMessenger RNA destabilizationHerpesvirus saimiriNumber of protooncogenesHSUR 1HSURs 1Rapid degradationSmall RNAsU RNARNA destabilizationCellular mRNAsMarmoset T lymphocytesAbundant viral transcriptHost proteinsUntranslated regionAUUUA motifsExhibit sequencesViral transcriptsPrimate virusesViral transformationUnstable messagesProteinRibonucleoprotein
1991
An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs.
Baserga SJ, Yang XD, Steitz JA. An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. The EMBO Journal 1991, 10: 2645-2651. PMID: 1714385, PMCID: PMC452965, DOI: 10.1002/j.1460-2075.1991.tb07807.x.Peer-Reviewed Original ResearchConceptsBox CU3 snRNANucleolar small RNAsSite-specific mutationsShort nucleotide sequencesFibrillarin proteinSmall RNAsDeletion analysisCommon binding siteBox DNucleotide sequenceSnRNPsMajor familiesSnRNAU3 snRNPRNAInput RNAFibrillarinBinding sitesC sequencesBindingProteinSequenceAnti-fibrillarin autoantibodiesBiogenesis
1988
Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc.
Montzka KA, Steitz JA. Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 8885-8889. PMID: 2973606, PMCID: PMC282611, DOI: 10.1073/pnas.85.23.8885.Peer-Reviewed Original ResearchConceptsSmall nuclear ribonucleoproteinU12 small nuclear ribonucleoproteinsSm small nuclear ribonucleoproteinsTrimethylguanosine cap structureTwo-dimensional gel fractionationLow-abundance RNAsLower eukaryotesSmall RNAsMRNA processingMammalian cellsMRNA splicingNuclear ribonucleoproteinAdditional speciesCap structureNuclease sensitivityNew RNASm classSm epitopesRNAU11Gel fractionationPotential roleU12EukaryotesSplicing
1982
Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La Lupus antibodies
Rinke J, Steitz J. Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La Lupus antibodies. Cell 1982, 29: 149-159. PMID: 7105180, DOI: 10.1016/0092-8674(82)90099-x.Peer-Reviewed Original ResearchConceptsRRNA moleculesLa proteinLa RNAsPrecursor formNuclear transcription systemUninfected mammalian cellsPulse-chase experimentsSmall RNAsSmall ribonucleoproteinPrecursor moleculesTransfer RNAMammalian cellsRibosomal RNATRNA precursorsCertain tRNAsSpecific tRNAsRNA transcriptsTranscription systemU residuesCell extractsMature sizeHeLa cellsRNAEssential roleProteinSmall RNPs in eucaryotic cells
Hendrick J, Mount S, Rinke J, Wolin S, Rosa M, Gottlieb E, Lerner M, Steitz J. Small RNPs in eucaryotic cells. 1982, 321-328. DOI: 10.1007/978-1-349-06343-7_44.Peer-Reviewed Original ResearchSmall nuclear RNAAbundant small nuclear RNAsRNA-protein complexesEukaryotic cellsSmall RNAsSmall ribonucleoproteinSubcellular locationNuclear RNARNA componentU1 snRNPsEucaryotic cellsComponent RNARibonucleoproteinRNP particlesRNAInitial discoveryProteinPartial characterizationState of maturationSnRNPsCellsSystemic lupus erythematosusDiversityMaturationMetabolism