Josephine Hoh, PhD
Associate Professor of Epidemiology (Chronic Diseases) and of Ophthalmology and Visual ScienceCards
Appointments
Contact Info
Yale School of Public Health
PO Box 208034, 60 College Street
New Haven, CT 06520-8034
United States
About
Titles
Associate Professor of Epidemiology (Chronic Diseases) and of Ophthalmology and Visual Science
Biography
Josephine Hoh, associate professor in chronic disease epidemiology and of ophthalmology and visual science, is currently involved in interdisciplinary research to elucidate disease pathophysiology, including how the genetic factors can actually lead individuals who carrying the risk variants to be ill at one point in life, what the environmental exposures are, and how they can influence an individual’s chance of contracting the disease.
Dr. Hoh was trained in mathematics in Taiwan and theoretical statistics and probability under the supervision of Professor Zhiliang Ying and the late Professor Herbert Robbins at Rutgers University.
As a research assistant professor at Rockefeller University she worked with Jurg Ott on linkage analysis for genetic factors of human disease and developed her expertise in biology. Two of the computational methods and tools they developed, SUMSTAT and p53MH, continue to be widely used. SUMSTAT can efficiently and effectively identify disease associated genetic variants, while p53MH and its extension can identify the DNA response elements of a tumor suppressor p53 as well as other transcription factors.
Now an associate professor at the Yale School of Public Health, Hoh focuses on developing new approaches to discover the genetic risks for more common diseases which usually have complex influences from both genetics and environmental exposures. Collaborating with national and international groups (Drs. Emily Chew and Rick Ferris at the National Eye Institute and Dr. Calvin Pang of Hong Kong University) her work on age-related macular degeneration (AMD), the most common cause of blindness in developed world, led to the first successful application of the genome-wide association study (GWAS) approach and was published widely. By employing GWAS, the Hoh lab has also investigated other complex traits including carcinoid cancer, scleroderma, asthma, longevity, among others.
Appointments
Chronic Disease Epidemiology
Associate Professor TenurePrimaryOphthalmology
Associate Professor TenureSecondary
Other Departments & Organizations
- Chronic Disease Epidemiology
- High Performance Computation
- Hoh Lab
- Ophthalmology
- Yale Cancer Center
- Yale School of Public Health
- Yale Ventures
Education & Training
- PhD
- Rutgers University (1998)
- BS
- National Tsing Hua University (1989)
Research
Overview
Medical Subject Headings (MeSH)
Research at a Glance
Yale Co-Authors
Publications Timeline
Evan Vosburgh, MD
Andrew DeWan, PhD, MPH
Caroline Zeiss, DACVP, DACLAM
Michael B. Bracken, PhD, MPH, FACE
Publications
2024
Complement factor H in molecular regulation of angiogenesis
Li J, Wang K, Starodubtseva M, Nadyrov E, Kapron C, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. Medical Review 2024, 4: 452-466. PMID: 39444793, PMCID: PMC11495524, DOI: 10.1515/mr-2023-0048.Peer-Reviewed Original ResearchConceptsComplement factor HComplement factor H geneAge-related macular degenerationComplement factor H proteinFactor HComplement activation fragmentsC-reactive proteinAnti-angiogenic effectsEndothelial heparan sulfateChoroidal neovascularizationMacular degenerationRegulation of angiogenesisMolecular regulation of angiogenesisDeficient miceComplement 3aMembrane attack complexComplement 5aPro-angiogenic eventsAngiogenesis-related diseasesCFH expressionPro-angiogenic capacityAlternative pathwayTherapeutic potentialComplement systemBlood vessels
2010
A pilot genome-wide association study shows genomic variants enriched in the non-tumor cells of patients with well-differentiated neuroendocrine tumors of the ileum
Walsh KM, Choi M, Oberg K, Kulke MH, Yao JC, Wu C, Jurkiewicz M, Hsu LI, Hooshmand SM, Hassan M, Janson ET, Cunningham JL, Vosburgh E, Sackler RS, Lifton RP, DeWan AT, Hoh J. A pilot genome-wide association study shows genomic variants enriched in the non-tumor cells of patients with well-differentiated neuroendocrine tumors of the ileum. Endocrine Related Cancer 2010, 18: 171-180. PMID: 21139019, PMCID: PMC3221459, DOI: 10.1677/erc-10-0248.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsCase-Control StudiesCell DifferentiationCellsDNA Copy Number VariationsFemaleGenetic VariationGenome-Wide Association StudyHumansIleal NeoplasmsMaleMeta-Analysis as TopicMicroarray AnalysisNeoplasm StagingNeuroendocrine TumorsPilot ProjectsPolymorphism, Single NucleotideReview Literature as TopicConceptsLoss of heterozygosityDana-Farber Cancer InstituteTumor cellsMD Anderson Cancer CenterCarcinoid tumor cellsUppsala University HospitalPopulation-based controlsAnderson Cancer CenterCopy number variantsBonferroni-corrected levelBlood-derived DNACarcinoid cancerReal-time quantitative PCRCancer CenterNeuroendocrine tumorsUniversity HospitalNon-tumor cellsSerious conditionIndependent cohortCancer InstituteKb heterozygous deletionSmall sample sizePilot genome-wide association studyGenetic polymorphismsSingle nucleotide polymorphisms
2009
p53 responsive elements in human retrotransposons
Harris CR, DeWan A, Zupnick A, Normart R, Gabriel A, Prives C, Levine AJ, Hoh J. p53 responsive elements in human retrotransposons. Oncogene 2009, 28: 3857-3865. PMID: 19718052, PMCID: PMC3193277, DOI: 10.1038/onc.2009.246.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsP53-responsive elementResponsive elementHuman genomeL1 promoterL1 elementsP53 DNA binding sitesRepetitive DNA elementsDNA binding sitesL1 mRNAP53 proteinCytosine methylationNuclear element-1DNA elementsGenomic stabilityHuman retrotransposonsP53-dependent processesGenomic changesGenomic protectionGenomeElement 1L1 mRNA expressionProteinBinding sitesPromoterL1 protein
2007
Linkage Disequilibrium Mapping for Complex Disease Genes
DeWan A, Klein RJ, Hoh J. Linkage Disequilibrium Mapping for Complex Disease Genes. Methods In Molecular Biology 2007, 376: 85-107. PMID: 17984540, DOI: 10.1007/978-1-59745-389-9_7.BooksCitationsMeSH Keywords and Concepts
2006
HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration
DeWan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, Barnstable C, Pang CP, Hoh J. HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration. Science 2006, 314: 989-992. PMID: 17053108, DOI: 10.1126/science.1133807.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAgedAged, 80 and overAgingAsian PeopleChromatin ImmunoprecipitationChromosomes, Human, Pair 10FemaleGenetic Predisposition to DiseaseGenotypeHeLa CellsHigh-Temperature Requirement A Serine Peptidase 1HumansLinkage DisequilibriumMacular DegenerationMaleMiddle AgedPolymorphism, Single NucleotidePromoter Regions, GeneticRetinal NeovascularizationSerine EndopeptidasesSerum Response FactorTranscription Factor AP-2ConceptsAssociation mapping strategySerine protease genesSingle nucleotide polymorphismsHTRA1 promoter polymorphismPromoter regionProtease geneChromosome 10q26H geneRisk-associated genotypesGenesGenetic risk factorsMajor genetic risk factorWild-type genotypeFactor H genePolymorphismGenotypesMapping strategyComplement factor H (CFH) genePromoter polymorphismHtrA1Age-related macular degenerationA Variant of the HTRA1 Gene Increases Susceptibility to Age-Related Macular Degeneration
Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, Chien J, DeWan A, Harmon J, Bernstein PS, Shridhar V, Zabriskie NA, Hoh J, Howes K, Zhang K. A Variant of the HTRA1 Gene Increases Susceptibility to Age-Related Macular Degeneration. Science 2006, 314: 992-993. PMID: 17053109, DOI: 10.1126/science.1133811.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAgedAgingAllelesCase-Control StudiesChromosomes, Human, Pair 10Cohort StudiesFemaleGenetic Predisposition to DiseaseGenotypeHigh-Temperature Requirement A Serine Peptidase 1HomozygoteHumansLymphocytesMacular DegenerationMaleMiddle AgedPigment Epithelium of EyePolymorphism, Single NucleotidePromoter Regions, GeneticRetinal DrusenReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSerine EndopeptidasesWhite PeopleConceptsAge-related macular degenerationAMD patientsMacular degenerationRisk of AMDPopulation attributable riskIrreversible vision lossStrong genetic predispositionRetinal pigment epitheliumAMD pathogenesisAttributable riskVision lossElevated expression levelsCommon causeSecreted serine proteaseNormal controlsGenetic predispositionPigment epitheliumCaucasian cohortAMD casesAMD susceptibilityIncreases SusceptibilityRisk allelesHTRA1 geneSingle nucleotide polymorphismsPotential new pathways
2005
Complement Factor H Polymorphism in Age-Related Macular Degeneration
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 2005, 308: 385-389. PMID: 15761122, PMCID: PMC1512523, DOI: 10.1126/science.1109557.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAgedAged, 80 and overAgingAllelesAmino Acid SubstitutionCase-Control StudiesChoroidChromosomes, Human, Pair 1Complement Factor HComplement Membrane Attack ComplexExonsFemaleGenetic MarkersGenetic Predisposition to DiseaseGenotypeHaplotypesHistidineHumansImmunity, InnateIntronsLinkage DisequilibriumMacular DegenerationMaleOligonucleotide Array Sequence AnalysisPigment Epithelium of EyePolymorphism, GeneticPolymorphism, Single NucleotideRisk FactorsSmokingConceptsAge-related macular degenerationComplement factor H (CFH) geneMacular degenerationLikelihood of AMDComplement Factor H PolymorphismRisk allelesC-reactive proteinFactor H geneAmino acids 402H polymorphismCFH geneFamily-based studyMajor causeSingle nucleotide polymorphismsCommon variantsDegenerationPolymorphismH gene
2001
Two Approaches for Consolidating Results from Genome Scans of Complex Traits: Selection Methods and Scan Statistics
Gordon D, Hoh J, Finch S, Levenstien M, Edington J, EdingtonLi W, Majewski J, Ott J. Two Approaches for Consolidating Results from Genome Scans of Complex Traits: Selection Methods and Scan Statistics. Genetic Epidemiology 2001, 21: s396-s402. PMID: 11793706, DOI: 10.1002/gepi.2001.21.s1.s396.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsAffected sib-pair testsFraction of markersLevel of significanceScan statisticTwo-point lodSusceptibility genesSib-pair testSingle-locus statisticsEmpirical p-valuesSimulated null dataSib pairsGenome scanMarker lociTDT testLinkage analysisComplex traitsGenotype dataSignificance levelGenesEmpirical significance levelsP-valueChromosomeReplicated 5Analysis of simulated dataReplication
News
News
- January 29, 2015
Genetic Underpinnings of AMD, Other Diseases Revealed in YSPH Studies
- April 15, 2010
Active companies in the New Haven area, and their founders
- April 01, 2008
Gene-hunters search the world for treatments
- April 15, 2007
Yale scientist finds two genetic anomalies linked to macular degeneration
Get In Touch
Contacts
Yale School of Public Health
PO Box 208034, 60 College Street
New Haven, CT 06520-8034
United States
Locations
60 College Street
Academic Office
Ste Room 416
New Haven, CT 06510