2023
STAT5-Feedback Controls Distinct Metabolic States for Dynamic Transitions between Cellular Activation and Quiescence in Acute Lymphoblastic Leukemia
Kume K, Chen Z, Robinson M, Chan L, Leveille E, Cosgun K, Cheng Z, Arce D, Khanduja D, Graeber T, Müschen M. STAT5-Feedback Controls Distinct Metabolic States for Dynamic Transitions between Cellular Activation and Quiescence in Acute Lymphoblastic Leukemia. Blood 2023, 142: 2977. DOI: 10.1182/blood-2023-191006.Peer-Reviewed Original ResearchB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaLymphoblastic leukemiaPharmacological inhibitionGenetic deletionCellular activationReceptor signalingCell deathBone marrow relapsePoor overall outcomePoor clinical outcomeLeukemia-initiating capacityOncogenic STAT5Mass spectrometry-based metabolomics analysisExpression levelsPhosphorylation of STAT5Flow cytometry analysisMetabolic statePositive MRDRole of mTORMarrow relapseAggressive courseClinical outcomesExcessive protein synthesisMetabolic outcomesImmunoglobulin Light Chains Control Permissiveness to Malignant B-Cell Transformation By RAS-Pathway Lesions
Chan L, Kume K, Hurtz C, Robinson M, Cosgun K, Müschen M. Immunoglobulin Light Chains Control Permissiveness to Malignant B-Cell Transformation By RAS-Pathway Lesions. Blood 2023, 142: 2974. DOI: 10.1182/blood-2023-190163.Peer-Reviewed Original ResearchJeKo-1 cellsB cell precursorsMature B cellsB cellsMantle cell lymphoma cellsCell lymphoma cellsGenetic ablationImmunoglobulin light chainsRAS activationOncogenic RASMalignant transformationB-cell acute lymphoblastic leukemiaConventional light chainsRAS pathwayLymphoma cellsCell deathOncogenic RAS activationLight chainAcute lymphoblastic leukemiaMature B-cell lymphomasTransgenic mouse modelB-cell lymphomaB-cell malignanciesMalignant B-cell transformationKappa-LCArtemis inhibition as a therapeutic strategy for acute lymphoblastic leukemia
Ogana H, Hurwitz S, Hsieh C, Geng H, Müschen M, Bhojwani D, Wolf M, Larocque J, Lieber M, Kim Y. Artemis inhibition as a therapeutic strategy for acute lymphoblastic leukemia. Frontiers In Cell And Developmental Biology 2023, 11: 1134121. PMID: 37082620, PMCID: PMC10111164, DOI: 10.3389/fcell.2023.1134121.Peer-Reviewed Original ResearchMature B cell lineB-cell acute lymphoblastic leukemiaB cell linesDNA double-strand break repairChromosome breaksDouble-strand break repairDNA-PKcs complexDNA-PK inhibitorGene expression analysisCell linesAcute lymphoblastic leukemiaKey endonucleaseDNA-PKcsBreak repairNonhomologous endExpression analysisLymphoblastic leukemiaTherapeutic strategiesRefractory B-cell acute lymphoblastic leukemiaHigh-risk prePharmacological inhibitionNovel therapeutic strategiesIndirect suppressionDirect inhibitionProliferationPhosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia
Chen Z, Zhou K, Xue J, Small A, Xiao G, Nguyen L, Zhang Z, Prince E, Weng H, Huang H, Zhao Z, Qing Y, Shen C, Li W, Han L, Tan B, Su R, Qin H, Li Y, Wu D, Gu Z, Ngo V, He X, Chao J, Leung K, Wang K, Dong L, Qin X, Cai Z, Sheng Y, Chen Y, Wu X, Zhang B, Shi Y, Marcucci G, Qian Z, Xu M, Müschen M, Chen J, Deng X. Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia. Science Translational Medicine 2023, 15: eabq8513. PMID: 36989375, PMCID: PMC11163962, DOI: 10.1126/scitranslmed.abq8513.Peer-Reviewed Original ResearchConceptsB-cell acute lymphoblastic leukemiaCell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaB-ALLRefractory/Oncogenic roleLymphoblastic leukemiaProtein kinase C epsilonOverall survival rateNormal precursor B cellsCrucial oncogenic rolePrecursor B cellsAdult patientsPDX modelsPharmacological targetingTherapeutic targetB cellsImproved therapiesSurvival rateLeukemia progressionTherapeutic potentialOverexpression of TET1TET1 proteinATM serine/threonine kinaseLeukemia
2022
Phosphorylation Stabilized TET1 Acts As an Oncoprotein and Therapeutic Target in B-Cell Acute Lymphoblastic Leukemia
Chen Z, Zhou K, Xue J, Small A, Xiao G, Nguyen L, Zhang Z, Prince E, Weng H, Huang H, Zhao Z, Qing Y, Shen C, Han L, Tan B, Li W, Su R, Qin H, Li Y, Wu D, Gu Z, Ngo V, He X, Chao J, Leung K, Wang K, Dong L, Qin X, Cai Z, Sheng Y, Chen Y, Wu X, Zhang B, Shi Y, Marcucci G, Qian Z, Xu M, Müschen M, Deng X, Chen J. Phosphorylation Stabilized TET1 Acts As an Oncoprotein and Therapeutic Target in B-Cell Acute Lymphoblastic Leukemia. Blood 2022, 140: 998-1000. DOI: 10.1182/blood-2022-165469.Peer-Reviewed Original ResearchB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaLymphoblastic leukemiaTherapeutic targetLeukemia
2021
PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis
Pan L, Hong C, Chan LN, Xiao G, Malvi P, Robinson ME, Geng H, Reddy ST, Lee J, Khairnar V, Cosgun KN, Xu L, Kume K, Sadras T, Wang S, Wajapeyee N, Müschen M. PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2016553118. PMID: 33531346, PMCID: PMC7896313, DOI: 10.1073/pnas.2016553118.Peer-Reviewed Original ResearchConceptsTransplant recipient miceDNA double-strand breaksNormal B cell developmentDouble-strand breaksB cell developmentGenetic deletionB cellsLymphoid transcription factorsGlucose transporter GLUT1Gatekeeper functionGlucose uptakeRecipient miceTranscription factorsSomatic recombinationSynthetic lethalityB-cell acute lymphoblastic leukemiaCell developmentMetabolic gatekeeperRefractory B-ALLDeficient murineCell acute lymphoblastic leukemiaPoor clinical outcomeCell typesAcute lymphoblastic leukemiaGlucose transport
2019
Identification of ZNF217 As an Essential Oncogenic Gene in B-Cell Acute Lymphoblastic Leukemia By CRISPR/Cas9-Based Library Screening
Qin X, Su R, Yang L, Chan A, Deng X, Qing Y, Klemm L, Müschen M, Chen C, Chen J. Identification of ZNF217 As an Essential Oncogenic Gene in B-Cell Acute Lymphoblastic Leukemia By CRISPR/Cas9-Based Library Screening. Blood 2019, 134: 1465. DOI: 10.1182/blood-2019-129849.Peer-Reviewed Original ResearchB-cell acute lymphoblastic leukemiaBCR-ABL1 fusionAcute lymphoblastic leukemiaAcute myeloid leukemiaAML cellsM6A regulatorsMLL-AF4 fusionAdult patientsLymphoblastic leukemiaPediatric B-cell acute lymphoblastic leukemiaEssential oncogenic roleM6A modificationMessenger RNACytogenetic characteristicsDismal survivalMyeloid leukemiaB cell progenitorsTherapeutic targetOncogenic roleSolid tumorsPatientsZinc finger protein 217B-lineageLeukemiaCytogenetic changesRationale for Targeting BCL6 in MLL-Rearranged B-ALL
Chan L, Hurtz C, Geng H, Ballabio E, Xiao G, Deb G, Khoury H, Armstrong S, Ernst P, Melnick A, Milne T, Müschen M. Rationale for Targeting BCL6 in MLL-Rearranged B-ALL. Blood 2019, 134: 1239. DOI: 10.1182/blood-2019-131565.Peer-Reviewed Original ResearchB-cell acute lymphoblastic leukemiaPharmacological inhibitionABT-199Group of patientsBCL6 expressionBone marrow biopsyPoor clinical outcomeAcute lymphoblastic leukemiaBCL2 inhibitor ABT-199BH3 mimetic ABT-199MLL gene rearrangementTransplant recipient miceMLL fusionsB-cell transformationClinical outcomesMarrow biopsyTreatment of MLLDismal outcomeLymphoblastic leukemiaRecipient miceNormal B cell developmentSelective vulnerabilityImmunohistochemical stainingInfant BSmall molecule inhibitorsRationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia
Hurtz C, Chan LN, Geng H, Ballabio E, Xiao G, Deb G, Khoury H, Chen CW, Armstrong SA, Chen J, Ernst P, Melnick A, Milne T, Müschen M. Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia. Genes & Development 2019, 33: 1265-1279. PMID: 31395741, PMCID: PMC6719625, DOI: 10.1101/gad.327593.119.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkers, TumorCell SurvivalCells, CulturedGene DeletionGene Expression Regulation, LeukemicGene TargetingHumansMiceMyeloid-Lymphoid Leukemia ProteinOncogene Proteins, FusionPrecursor Cell Lymphoblastic Leukemia-LymphomaPrognosisPromoter Regions, GeneticProto-Oncogene Proteins c-bcl-6ConceptsB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaLymphoblastic leukemiaPharmacological inhibitionGroup of patientsBCL6 expressionBone marrow biopsyBH3 mimetic ABT-199Transplant recipient miceMLL fusionsB-cell transformationMarrow biopsyTreatment of MLLDismal outcomeRecipient miceNormal B cell developmentImmunohistochemical stainingTranscriptional activationB cell developmentMalignant transformationDrug resistanceGenetic deletionPatient samplesExpression of BimMLL-ENL fusion
2017
Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia
Takao S, Chien W, Madan V, Lin D, Ding L, Sun Q, Mayakonda A, Sudo M, Xu L, Chen Y, Jiang Y, Gery S, Lill M, Park E, Senapedis W, Baloglu E, Müschen M, Koeffler H. Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia. Leukemia 2017, 32: 616-625. PMID: 28904384, DOI: 10.1038/leu.2017.281.Peer-Reviewed Original ResearchMeSH KeywordsAcrylamidesAminopyridinesAnimalsAntineoplastic AgentsApoptosisCell Line, TumorCell ProliferationCell SurvivalCytokinesDisease Models, AnimalFemaleHumansMaleMiceNADNicotinamide PhosphoribosyltransferaseP21-Activated KinasesPrecursor B-Cell Lymphoblastic Leukemia-LymphomaSignal TransductionXenograft Model Antitumor AssaysConceptsB-cell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaP21-activated kinase 4Nicotinamide phosphoribosyltransferaseLymphoblastic leukemiaNAMPT inhibitionPatient-derived xenograft murine modelsPrognosis of patientsNicotinamide adenine dinucleotideNovel therapeutic strategiesNicotinic acid supplementationNovel dual inhibitorXenograft murine modelCell growth inhibitionAcid supplementationMurine modelTherapeutic strategiesRate-limiting enzymeCytogenetic abnormalitiesVivo efficacyPatientsNAMPT inhibitorsInhibitory effectDual inhibitorKinase 4
2016
Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition
Köhrer S, Havranek O, Seyfried F, Hurtz C, Coffey G, Kim E, ten Hacken E, Jäger U, Vanura K, O'Brien S, Thomas D, Kantarjian H, Ghosh D, Wang Z, Zhang M, Ma W, Jumaa H, Debatin K, Müschen M, Meyer L, Davis R, Burger J. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia 2016, 30: 1246-1254. PMID: 26847027, PMCID: PMC5459356, DOI: 10.1038/leu.2016.9.Peer-Reviewed Original ResearchConceptsB-cell acute lymphoblastic leukemiaSpleen tyrosine kinaseAcute lymphoblastic leukemiaPI3K/AktLymphoblastic leukemiaTherapeutic targetPrecursor B-cell acute lymphoblastic leukemiaPromising new therapeutic targetNew therapeutic targetsGene expression signaturesImmune phenotypeImportant downstream mediatorSYK inhibitionMouse modelPre-BCR signalingReceptor signalingDownstream mediatorExpression signaturesGenetic disruptionLeukemiaExquisite dependencyTyrosine kinaseAktFOXO1Signaling
2015
STAT5 antagonism of B cell superenhancer networks initiates progenitor B cell leukemia and predicts patient survival (HEM1P.222)
Farrar M, Katerndahl C, Heltemes Harris L, Willette M, Henzler C, Yang R, Silverstein K, Frietze S, Schjerven H, Ramsey L, Hubbard G, Muschen M, Kornblau S. STAT5 antagonism of B cell superenhancer networks initiates progenitor B cell leukemia and predicts patient survival (HEM1P.222). The Journal Of Immunology 2015, 194: 50.5-50.5. DOI: 10.4049/jimmunol.194.supp.50.5.Peer-Reviewed Original ResearchB cell developmentPatient outcomesB cellsB-cell acute lymphoblastic leukemiaProgenitor B cellsCell acute lymphoblastic leukemiaAcute lymphoblastic leukemiaCell developmentDirect clinical relevanceB-cell leukemiaShort remissionsAggressive diseasePatient survivalLymphoblastic leukemiaTranscription factor STAT5Cell leukemiaClinical relevanceTranscriptional programsLeukemiaDegree of antagonismPre-BCRSurvivalSTAT5 activationMicroarray analysisSTAT5
2014
Harnessing Negative B Cell Selection to Overcome Drug-Resistance in Acute Lymphoblastic Leukemia
Chen Z, Shojaee S, Geng H, Lee J, Buchner M, Klemm L, Lowell C, Paietta E, Willman C, Carroll W, Melnick A, Jung J, Jumaa H, Coligan J, Bolland S, Mak T, Muschen M. Harnessing Negative B Cell Selection to Overcome Drug-Resistance in Acute Lymphoblastic Leukemia. Blood 2014, 124: 792. DOI: 10.1182/blood.v124.21.792.792.Peer-Reviewed Original ResearchAcute lymphoblastic leukemiaTyrosine kinase inhibitorsB cell receptorInhibitory receptorsTherapeutic targetPre-BCR signalingLymphoblastic leukemiaXenograft cellsB cellsSurvival rateB-cell acute lymphoblastic leukemiaCell deathAuto-reactive clonesFree survival rateCell acute lymphoblastic leukemiaOverall survival rateWorse clinical outcomesLeukemia cellsNegative B cell selectionAdditional therapeutic targetsAvailable therapeutic interventionsG1cell cycle arrestPotent tyrosine kinase inhibitorNovel small molecule inhibitorColony formation capacity
2013
Bruton′s Tyrosine Kinase Inhibitor Ibrutinib Interferes With Constitutive and Induced Pre-B Cell Receptor Signaling In B-Cell Acute Lymphoblastic Leukemia
Kim E, Koehrer S, Rosin N, Wang Z, Thomas D, Ravandi F, Kornblau S, Kantarjian H, O'Brien S, Estrov Z, Buggy J, Muschen M, Davis R, Burger J. Bruton′s Tyrosine Kinase Inhibitor Ibrutinib Interferes With Constitutive and Induced Pre-B Cell Receptor Signaling In B-Cell Acute Lymphoblastic Leukemia. Blood 2013, 122: 1399. DOI: 10.1182/blood.v122.21.1399.1399.Peer-Reviewed Original ResearchB cell receptorBruton's tyrosine kinasePre-BCR signalingInhibitor ibrutinibCalcium mobilizationCell linesBruton tyrosine kinase inhibitor ibrutinibB-cell acute lymphoblastic leukemiaGene expression profile analysisB-cell acute lymphoblastic leukemia cell linesEffects of ibrutinibAcute lymphoblastic leukemia cell lineAcute lymphoblastic leukemiaCell proliferationKinase inhibitor ibrutinibIntracellular calcium mobilizationLymphoblastic leukemia cell lineBTK inhibitor ibrutinibCalcium flux assaysB cell activationPre-B cell receptor signalingHalf maximal inhibitory concentrationV4 Expression BeadChipSensitive cell linesTyrosine kinase
2009
Targeting Survivin Using ICG-001 May Overcome Drug Resistance in Primary B-Cell Acute Lymphoblastic Leukemia.
Jiang E, Park E, Scharman C, Hsieh Y, Kadavallore A, Nguyen C, Zhao Y, McMillan M, Groffen J, Heisterkamp N, Muschen M, Kahn M, Kim Y. Targeting Survivin Using ICG-001 May Overcome Drug Resistance in Primary B-Cell Acute Lymphoblastic Leukemia. Blood 2009, 114: 3072. DOI: 10.1182/blood.v114.22.3072.3072.Peer-Reviewed Original ResearchMedian survival timeAcute lymphoblastic leukemiaWhite blood cellsICG-001Control groupBlood cellsStandard chemotherapyRed blood cellsPeripheral bloodLymphoblastic leukemiaSmall molecule inhibitor ICG-001B-cell acute lymphoblastic leukemiaDrug resistanceCBP/β-cateninNormal hematopoiesisPromising therapeutic principleNormal white blood cellsConventional drug treatmentLeukemia cellsPrior intravenous injectionEnd of treatmentNovel therapeutic optionsNormal weight gainNew treatment modalitiesSubcutaneous osmotic pumps