Featured Publications
Within-host evolution of a gut pathobiont facilitates liver translocation
Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel MA, Palm NW. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 2022, 607: 563-570. PMID: 35831502, PMCID: PMC9308686, DOI: 10.1038/s41586-022-04949-x.Peer-Reviewed Original ResearchConceptsHost evolutionGene expression programsCell wall structureNon-synonymous mutationsComparative genomicsIndependent lineagesExperimental evolutionExpression programsDivergent evolutionRegulatory genesBacterial behaviorCritical regulatorBacterial translocationGut commensalsTranslocationE. gallinarumMesenteric lymph nodesInitiation of inflammationImmune evasionWall structureEvade DetectionMucosal nicheLactobacillus reuteriCommensalGut microbiotaPathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity
Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT, Roth AS, Vieira SM, Kriegel C, Adeniyi O, Mulla MJ, Abrahams VM, Kwok WW, Nussinov R, Erkan D, Goodman AL, Kriegel MA. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host & Microbe 2019, 26: 100-113.e8. PMID: 31227334, PMCID: PMC8194364, DOI: 10.1016/j.chom.2019.05.003.Peer-Reviewed Original ResearchConceptsAntiphospholipid syndromePathogenic monoclonal antibodyHuman autoimmune diseasesGut commensalsB-cell autoepitopesHuman gut commensalGPI IgGAPS patientsIgG titersOral gavageMemory TSusceptible miceAntigenic loadAutoimmune diseasesAutoimmune pathologyTrigger autoimmunityHuman autoimmunityGlycoprotein IGPI autoantibodiesAutoimmunityMonoclonal antibodiesCell clonesCross reactMimotopesAutoantibodiesA Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity
Zegarra-Ruiz DF, Beidaq A, Iñiguez AJ, Di Ricco M, Vieira S, Ruff WE, Mubiru D, Fine RL, Sterpka J, Greiling TM, Dehner C, Kriegel MA. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host & Microbe 2018, 25: 113-127.e6. PMID: 30581114, PMCID: PMC6377154, DOI: 10.1016/j.chom.2018.11.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoimmunityClostridiaceaeDendritic CellsDietDiet TherapyDisease Models, AnimalDNA, RibosomalFatty Acids, VolatileFecesFemaleGastrointestinal MicrobiomeGerm-Free LifeGlomerulonephritisHumansHypersensitivityInterferon Type IKidneyLactobacillusLimosilactobacillus reuteriLupus Erythematosus, SystemicMembrane GlycoproteinsMiceMice, Inbred C57BLRNA, Ribosomal, 16SStarchSurvival RateToll-Like Receptor 7ConceptsPlasmacytoid dendritic cellsSystemic lupus erythematosusInterferon pathwayToll-like receptor 7L. reuteri colonizationGut microbiota compositionDietary resistant starchShort-chain fatty acidsAutoimmune manifestationsDependent mouse modelSLE patientsOrgan involvementDendritic cellsLupus erythematosusReceptor 7Systemic autoimmunityHuman autoimmunityMouse modelGut microbiotaMetabolic diseasesMicrobiota compositionWestern lifestyleAutoimmunityDietary effectsBeneficial effectsCommensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus
Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, Ruiz DZ, Renfroe SC, Vieira SM, Ruff WE, Sim S, Kriegel C, Glanternik J, Chen X, Girardi M, Degnan P, Costenbader KH, Goodman AL, Wolin SL, Kriegel MA. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Science Translational Medicine 2018, 10 PMID: 29593104, PMCID: PMC5918293, DOI: 10.1126/scitranslmed.aan2306.Peer-Reviewed Original ResearchConceptsLupus patientsGlomerular immune complex depositsPositive lupus patientsImmune complex depositsGerm-free miceSigns of autoimmunityB cell responsesT cell clonesNovel treatment approachesTriggers of autoimmunityCommensal bacterial speciesEarliest autoantibodiesChronic autoimmunityAutoimmune diseasesHealthy controlsT cellsTreatment approachesSusceptible individualsAutoimmunityCell responsesCommensal speciesLupusPatientsCell clonesGut commensalsTranslocation of a gut pathobiont drives autoimmunity in mice and humans
Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018, 359: 1156-1161. PMID: 29590047, PMCID: PMC5959731, DOI: 10.1126/science.aar7201.Peer-Reviewed Original ResearchConceptsGut pathobiontAutoimmune-prone miceMurine findingsIntramuscular vaccinePathogenic autoantibodiesLiver biopsyAutoimmune responseAutoimmune patientsAntibiotic treatmentT cellsImmune diseasesAutoimmunitySusceptible humansPathobiontsSystemic tissuesHuman hepatocytesAutoantibodiesMortalityMiceCocultureHepatocytesGenetic backgroundTissueBiopsyPatients
2023
Translocating Lactobacillus torments tumors via tryptophan catabolism
Pereira M, Kriegel M. Translocating Lactobacillus torments tumors via tryptophan catabolism. Cell 2023, 186: 1821-1823. PMID: 37116468, DOI: 10.1016/j.cell.2023.03.022.Peer-Reviewed Original Research
2022
Subdoligranulum chews up joints: how a gut pathobiont can instigate arthritis
Kriegel M. Subdoligranulum chews up joints: how a gut pathobiont can instigate arthritis. Trends In Immunology 2022, 44: 4-6. PMID: 36494272, DOI: 10.1016/j.it.2022.11.006.Commentaries, Editorials and LettersConceptsRheumatoid arthritisSystemic autoimmune responseCertain autoimmune diseasesGnotobiotic mouse modelGut pathobiontSynovial inflammationAutoimmune responseAutoimmune diseasesMouse modelMonoclonal autoantibodiesArthritisGut commensalsHuman gut commensalAutoantibodiesOrigin hypothesisInflammationPathobiontsDiseaseSubdoligranulumEvolving concepts of host–pathobiont interactions in autoimmunity
Pereira M, Kriegel M. Evolving concepts of host–pathobiont interactions in autoimmunity. Current Opinion In Immunology 2022, 80: 102265. PMID: 36444784, DOI: 10.1016/j.coi.2022.102265.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAutoimmune diseasesSecondary lymphoid tissuesUnconventional therapeutic approachesAutoimmune pathwaysMucosal sitesLymphoid tissueMultistep pathogenesisTherapeutic approachesImmune functionMultifactorial diseaseDiseasePathobiontsSecretion of metabolitesNon-gut tissuesHuman microbiomeTissueAutoimmunityAutoantigensPathogenesisEnvironmental factorsSecretion
2021
Development of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria
Barbhaiya M, Zuily S, Ahmadzadeh Y, Amigo M, Avcin T, Bertolaccini M, Branch D, Jesus G, Devreese K, Frances C, Garcia D, Guillemin F, Levine S, Levy R, Lockshin M, Ortel T, Seshan S, Tektonidou M, Wahl D, Willis R, Naden R, Costenbader K, Erkan D, Agmon‐Levin N, Aguilar C, Alba P, Alpan O, Ambrozic A, Amoura Z, Andrade D, Andrade L, Appenzeller S, Esen B, Atsumi T, Berkun Y, Cabral A, Canaud G, Cervera R, Chen P, Chighizola C, Cimaz R, Cohen H, Costedoat‐Chalumeau N, Crowther M, Cuadrado M, de Groot P, de Moerloose P, Derksen R, Diz‐Kucukkaya R, Dörner T, Fortin P, Giannakopoulos B, Gómez‐Puerta J, Gonzalez E, Inanc M, Kenet G, Khamashta M, Kriegel M, Krilis S, Laskin C, Massicotte P, McCarty G, Meroni P, Mikdashi J, Myones B, Pengo V, Petri M, Roubey R, Sammaritano L, Sanna G, Sciascia S, Signorelli F, Soybilgic A, Tincani A, Woller S, Yelnik C. Development of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria. Arthritis Care & Research 2021, 73: 1490-1501. PMID: 33253499, PMCID: PMC8966711, DOI: 10.1002/acr.24520.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAntiphospholipid syndromeAPS classificationPhase IAPS classification criteriaCandidate criteriaPhase IIClassification criteriaItem reduction techniquesAmerican CollegeNominal group techniqueDelphi exerciseMultidisciplinary initiativeLaboratory domainHigher likelihoodRheumatologyCase collectionSystematic literature reviewPhysician scientistsPresent studyEuropean AllianceAggregate scoreLiterature reviewConsensus-based approach
2020
Host–microbiota interactions in immune-mediated diseases
Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology 2020, 18: 521-538. PMID: 32457482, DOI: 10.1038/s41579-020-0367-2.Peer-Reviewed Original ResearchConceptsImmune-mediated diseasesHost-microbiota interactionsImmune systemChronic inflammatory disordersSkin microbiotaHost immune systemProne hostsImmune toleranceInflammatory disordersTherapeutic avenuesDiseaseHost-microorganism interactionsMicrobiotaGnotobiotic modelsMolecular mechanismsBarrier surfacesNew studiesUrgent needMucosal
2015
Autoimmune host–microbiota interactions at barrier sites and beyond
Ruff WE, Kriegel MA. Autoimmune host–microbiota interactions at barrier sites and beyond. Trends In Molecular Medicine 2015, 21: 233-244. PMID: 25771098, PMCID: PMC5918312, DOI: 10.1016/j.molmed.2015.02.006.Peer-Reviewed Original ResearchConceptsBarrier sitesAutoimmune animal modelsPathogenesis of autoimmunityBystander activationHost-microbiota interactionsAutoimmune diseasesAdaptive immunityAnimal modelsInfectious agentsAutoimmunityGnotobiotic approachesHomeostatic conditionsInternal organsCurrent literatureMicrobiotaDetrimental effectsHuman microbiome studiesDysbiosisPathogenesisMicrobiome studiesDiseaseImmunity
2014
Diet, microbiota and autoimmune diseases
Vieira S, Pagovich O, Kriegel M. Diet, microbiota and autoimmune diseases. Lupus 2014, 23: 518-526. PMID: 24763536, PMCID: PMC4009622, DOI: 10.1177/0961203313501401.Peer-Reviewed Original ResearchConceptsAutoimmune diseasesGut microbial communityGerm-free mouse modelDevelopment of autoimmunityDiet-derived metabolitesType 1 diabetesSeverity of diseaseLife-prolonging effectAdaptive immune systemAntiphospholipid syndromeAutoimmune modelSystemic lupusMultiple sclerosisGastrointestinal tractMurine modelMouse modelRodent modelsImmunomodulatory potentialCommensal bacteriaImmune systemCaloric restrictionGut microbiomeDietary changesLupusGut commensals
2004
Defective Suppressor Function of Human CD4+ CD25+ Regulatory T Cells in Autoimmune Polyglandular Syndrome Type II
Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM. Defective Suppressor Function of Human CD4+ CD25+ Regulatory T Cells in Autoimmune Polyglandular Syndrome Type II. Journal Of Experimental Medicine 2004, 199: 1285-1291. PMID: 15117972, PMCID: PMC2211900, DOI: 10.1084/jem.20032158.Peer-Reviewed Original ResearchConceptsAutoimmune polyglandular syndromeRegulatory T cellsAPS IIT cellsAutoimmune polyglandular syndrome type IIOrgan-specific autoimmune diseasesAPS type IAPS type IIDefective suppressor functionNormal healthy donorsImportant surface markerPolyglandular syndromeAutoimmune endocrinopathiesControl patientsMultiple endocrinopathiesAutoimmune diseasesPeripheral bloodSuppressive capacityType IIHealthy donorsHuman autoimmunityCentral toleranceHuman CD4Murine modelSurface markers