2023
A membrane-associated MHC-I inhibitory axis for cancer immune evasion
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia P, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023, 186: 3903-3920.e21. PMID: 37557169, PMCID: PMC10961051, DOI: 10.1016/j.cell.2023.07.016.Peer-Reviewed Original ResearchConceptsAcute myeloid leukemiaSolid cancersImmune evasionCancer immune evasionImmune checkpoint blockadeMultiple solid cancersMajor Histocompatibility Complex Class I Antigen PresentationPotential therapeutic targetCell-dependent mannerCell immunityCancer survivalMyeloid leukemiaAntigen presentationTherapeutic targetTransmembrane protein 127Tumor growthGene signatureCancer treatmentCancerPeptide-MHCMHCLeukemiaSushi domainTrimolecular complexE3 ubiquitin ligase WWP2A membrane-associated inhibitory axis of MHC-I presentation for cancer immune evasion
Lu Q, Chen X, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Zhang J, Cammer M, Wang K, Ciantra Z, You J, Guo Q, Zhang H, Sengupta D, Boukhris A, Liu C, Cresswell P, Dahia P, Aifantis I, Wang J. A membrane-associated inhibitory axis of MHC-I presentation for cancer immune evasion. The Journal Of Immunology 2023, 210: 89.12-89.12. DOI: 10.4049/jimmunol.210.supp.89.12.Peer-Reviewed Original ResearchAcute myeloid leukemiaInhibitory axisSolid cancersImmune evasionT cell-dependent mannerCancer immune evasionImmune checkpoint blockadeT cell immunityNumber of tumorsMultiple solid cancersCell-dependent mannerApplicable therapeutic targetMDS FoundationCancer survivalMyeloid leukemiaTherapeutic targetTransmembrane protein 127Tumor growthGene signatureCancer treatmentMHCPeptide-MHCLeukemiaSushi domainCancer
2022
SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression
Arshad N, Laurent-Rolle M, Ahmed W, Hsu J, Mitchell S, Pawlak J, Sengupta D, Biswas K, Cresswell P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2208525120. PMID: 36574644, PMCID: PMC9910621, DOI: 10.1073/pnas.2208525120.Peer-Reviewed Original ResearchConceptsMHC-I expressionSARS-CoV-2Major histocompatibility complex (MHC) class I moleculesT cell recognitionVirus-infected cellsClass I moleculesAntigen presentationOngoing COVID-19 pandemicHeavy chainImmune evasionViral peptidesSecretory pathwayDistinct mechanismsMHCI moleculesPeptide-MHCInfected cellsCausative agentCell recognitionCD8COVID-19 pandemicViral proteinsEndoplasmic reticulumHuman MHCORF7a
2011
TAP-independent presentation of the melanoma vaccine candidate epitope gp100209-217 requires no gp100 sequences outside the core peptide and is sensitive to cytosolic TPP2 degradation (100.2)
Leonhardt R, Vigneron N, Van den Eynde B, Cresswell P. TAP-independent presentation of the melanoma vaccine candidate epitope gp100209-217 requires no gp100 sequences outside the core peptide and is sensitive to cytosolic TPP2 degradation (100.2). The Journal Of Immunology 2011, 186: 100.2-100.2. DOI: 10.4049/jimmunol.186.supp.100.2.Peer-Reviewed Original ResearchMHC class ITripeptidyl peptidase 2TAP-independent presentationClass ITumor-specific antigenic peptideImmune evasion strategiesPeptide vaccineAntigen presentationImmune evasionHLAEvasion strategiesAntigenic peptidesPeptidase 2Proteasome activityGp100PresentationTumorsTAP transporterTAP functionTransporter systemCore peptidePeptidesTotal lackVaccine