2022
Nanoparticle‐mediated genome editing in single‐cell embryos via peptide nucleic acids
Putman R, Ricciardi A, Carufe K, Quijano E, Bahal R, Glazer P, Saltzman W. Nanoparticle‐mediated genome editing in single‐cell embryos via peptide nucleic acids. Bioengineering & Translational Medicine 2022, 8: e10458. PMID: 37206203, PMCID: PMC10189434, DOI: 10.1002/btm2.10458.Peer-Reviewed Original ResearchSingle-cell embryosPeptide nucleic acidGene editingNucleic acidsNanoparticlesGross developmental abnormalitiesGenome editingNormal physiological developmentOff-target effectsDonor DNAGenetic diseasesConcept workEmbryosGenomic effectsDevelopmental abnormalitiesNormal growthEmbryogenesisPhysiological developmentEditingUnderlying mutationPreimplantation genetic diagnosisDisease pathogenesisGenetic diagnosisNormal morphologyAcidAn ELISA-based platform for rapid identification of structure-dependent nucleic acid–protein interactions detects novel DNA triplex interactors
Economos NG, Thapar U, Balasubramanian N, Karras GI, Glazer PM. An ELISA-based platform for rapid identification of structure-dependent nucleic acid–protein interactions detects novel DNA triplex interactors. Journal Of Biological Chemistry 2022, 298: 102398. PMID: 35988651, PMCID: PMC9493393, DOI: 10.1016/j.jbc.2022.102398.Peer-Reviewed Original ResearchConceptsNucleic acid structuresNucleic acid-protein interactionsNucleotide excision repairSingle-strand annealing repairDouble-strand break intermediatesUnusual nucleic acid structuresNovel interactorNucleic acid interactionsHigh-throughput platformCellular processesFactor localizationAcid structureExcision repairRelevant lociHuman cellsGene editingAcid interactionsInteractorsTherapeutic gene editingNucleic acidsDNA triplexesRapid identificationComparative approachGenomeTriplexes
2018
In utero nanoparticle delivery for site-specific genome editing
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nature Communications 2018, 9: 2481. PMID: 29946143, PMCID: PMC6018676, DOI: 10.1038/s41467-018-04894-2.Peer-Reviewed Original ResearchConceptsSite-specific genome editingReversal of splenomegalyPeptide nucleic acidIntra-amniotic administrationBlood hemoglobin levelsMonogenic disordersNanoparticle deliveryPolymeric nanoparticlesPostnatal elevationGestational ageHemoglobin levelsImproved survivalPediatric morbidityDisease improvementHuman β-thalassemiaReticulocyte countNormal organ developmentMouse modelNormal rangeEarly interventionGenome editingOff-target mutationsPostnatal growthGene editingVersatile method
2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formation