2023
Clinical and genomic differences in supratentorial versus infratentorial NF2 mutant meningiomas.
Tabor J, O'Brien J, Vasandani S, Vetsa S, Lei H, Jalal M, Marianayagam N, Jin L, Millares Chavez M, Haynes J, Dincer A, Yalcin K, Aguilera S, Omay S, Mishra-Gorur K, McGuone D, Morales-Valero S, Fulbright R, Gunel M, Erson-Omay E, Moliterno J. Clinical and genomic differences in supratentorial versus infratentorial NF2 mutant meningiomas. Journal Of Neurosurgery 2023, 139: 1648-1656. PMID: 37243548, DOI: 10.3171/2023.4.jns222929.Peer-Reviewed Original ResearchConceptsSubtotal resectionSupratentorial tumorsElevated Ki-67High-risk featuresProgression-free survivalChromosome 1p deletionInfratentorial counterpartsInfratentorial tumorsPostoperative managementSomatic driver mutationsCerebral convexityGrade IIInfratentorial meningiomasKi-67Posterior fossaLoss of heterozygosityMeningiomasResectionTumorsWhole-exome sequencing dataDriver mutationsHigh gradeSignificant differencesExome sequencing dataSporadic meningiomas
2021
Comprehensive Genomic Characterization of A Case of Granular Cell Tumor of the Posterior Pituitary Gland: A Case Report
Hong CS, Elsamadicy AA, Fisayo A, Inzucchi SE, Gopal PP, Vining EM, Erson-Omay EZ, Omay S. Comprehensive Genomic Characterization of A Case of Granular Cell Tumor of the Posterior Pituitary Gland: A Case Report. Frontiers In Endocrinology 2021, 12: 762095. PMID: 34925233, PMCID: PMC8671743, DOI: 10.3389/fendo.2021.762095.Peer-Reviewed Original ResearchConceptsGranular cell tumorPosterior pituitary glandCell tumorsPituitary glandComprehensive genomic characterizationWhole-exome sequencingImmune checkpoint inhibitorsPoor clinical outcomePituitary gland tumorsHistone deacetylase inhibitorsInstitutional review boardRadiographic compressionUnderwent resectionCheckpoint inhibitorsMedical therapyPituitary massClinical outcomesOptic nerveSignificant morbidityResidual diseaseCase reportCentral hypothyroidismPharmacologic agentsGland tumorsTherapeutic targetingType of bony involvement predicts genomic subgroup in sphenoid wing meningiomas
Jin L, Youngblood MW, Gupte TP, Vetsa S, Nadar A, Barak T, Yalcin K, Aguilera SM, Mishra-Gorur K, Blondin NA, Gorelick E, Omay SB, Pointdujour-Lim R, Judson BL, Alperovich M, Aboian MS, McGuone D, Gunel M, Erson-Omay Z, Fulbright RK, Moliterno J. Type of bony involvement predicts genomic subgroup in sphenoid wing meningiomas. Journal Of Neuro-Oncology 2021, 154: 237-246. PMID: 34350560, DOI: 10.1007/s11060-021-03819-2.Peer-Reviewed Original ResearchConceptsSpheno-orbital meningiomasSphenoid wing meningiomaBony involvementTRAF7 mutationsGenomic subgroupsPre-operative clinical featuresTumor invasionYale-New Haven HospitalAdditional clinical variablesSubset of tumorsPre-operative predictionWhole-exome sequencingBone involvementBone invasionClinical featuresClinical variablesGrade IIMolecular subtypesRecurrence patternsClinical implicationsHyperostosisExome sequencingMeningiomasTumorsGenomic drivers
2017
Integrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2Longitudinal analysis of treatment-induced genomic alterations in gliomas
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine 2017, 9: 12. PMID: 28153049, PMCID: PMC5290635, DOI: 10.1186/s13073-017-0401-9.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsChromosome AberrationsCombined Modality TherapyDisease ProgressionDNA Mismatch RepairDNA Mutational AnalysisDNA, NeoplasmExomeFemaleGeneral SurgeryGenome, HumanGenomicsGlioblastomaHumansImmunotherapyLongitudinal StudiesMiddle AgedMutationNeoplasm Recurrence, LocalPrecision MedicineRadiotherapyTreatment OutcomeConceptsWhole-exome sequencingMismatch repair deficiencyImmune checkpoint inhibitionMalignant brain tumorsMolecular changesLongitudinal analysisMedian survivalCheckpoint inhibitionSubsequent recurrenceMaximal resectionStandard treatmentBackgroundGlioblastoma multiformeBrain tumorsTumor-normal pairsFavorable responsePrimary GBMIndividual tumorsConclusionsOur studyPrecision therapyPersonalized treatmentGenomic profilingRepair deficiencyGenomic alterationsGenomic profilesTherapy
2013
Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO
Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yılmaz B, Grady C, Tanrıkulu B, Bakırcıoğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, Holland EC, Mane S, State MW, Bilgüvar K, Baehring JM, Gutin PH, Piepmeier JM, Vortmeyer A, Brennan CW, Pamir MN, Kılıç T, Lifton RP, Noonan JP, Yasuno K, Günel M. Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339: 1077-1080. PMID: 23348505, PMCID: PMC4808587, DOI: 10.1126/science.1233009.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBrain NeoplasmsChromosomes, Human, Pair 22DNA Mutational AnalysisFemaleGenes, Neurofibromatosis 2Genomic InstabilityGenomicsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMeningeal NeoplasmsMeningiomaMiddle AgedMutationNeoplasm GradingProto-Oncogene Proteins c-aktReceptors, G-Protein-CoupledSmoothened ReceptorTumor Necrosis Factor Receptor-Associated Peptides and Proteins