Featured Publications
Maturation of germinal center B cells after influenza virus vaccination in humans
McIntire K, Meng H, Lin T, Kim W, Moore N, Han J, McMahon M, Wang M, Malladi S, Mohammed B, Zhou J, Schmitz A, Hoehn K, Carreño J, Yellin T, Suessen T, Middleton W, Teefey S, Presti R, Krammer F, Turner J, Ward A, Wilson I, Kleinstein S, Ellebedy A. Maturation of germinal center B cells after influenza virus vaccination in humans. Journal Of Experimental Medicine 2024, 221: e20240668. PMID: 38935072, PMCID: PMC11211068, DOI: 10.1084/jem.20240668.Peer-Reviewed Original ResearchConceptsB cellsInfluenza vaccineGerminal centersAntigen-specific GC B cellsResponse to seasonal influenza vaccinationLong-lived bone marrow plasma cellsResponse to influenza vaccinationBone marrow plasma cellsGerminal center B cellsGC B cell clonesInfluenza virus vaccineMaturation of B cellsMarrow plasma cellsSeasonal influenza vaccineMemory B cellsHemagglutinin (HAB cell clonesGC B cellsInfluenza hemagglutinin (HAH5 HANeedle aspirationLymphoid structuresLymph nodesPlasma cellsGC reaction
2023
Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine
de Assis F, Hoehn K, Zhang X, Kardava L, Smith C, Merhebi O, Buckner C, Trihemasava K, Wang W, Seamon C, Chen V, Schaughency P, Cheung F, Martins A, Chiang C, Li Y, Tsang J, Chun T, Kleinstein S, Moir S. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Reports 2023, 42: 112780. PMID: 37440409, PMCID: PMC10529190, DOI: 10.1016/j.celrep.2023.112780.Peer-Reviewed Original ResearchMeSH Keywords2019-nCoV Vaccine mRNA-1273Antibodies, ViralB-LymphocytesCOVID-19COVID-19 VaccinesHumansSARS-CoV-2VaccinationConceptsMemory B cellsB cell receptorB cellsAtypical memory B cellsInfection-naïve individualsTwo-dose SARSSARS-CoV-2 mRNAB cell responsesAntibody-secreting cellsMonth 6Protective immunityCell responsesCell receptorClonal expansionImmunoglobulin GEarly timepointsLater timepointsPlasmablastsVaccinationCD71TimepointsSurface proteinsCellsMultimodal single-cell analysisMRNAHigh-throughput single-cell profiling of B cell responses following inactivated influenza vaccination in young and older adults
Wang M, Jiang R, Mohanty S, Meng H, Shaw A, Kleinstein S. High-throughput single-cell profiling of B cell responses following inactivated influenza vaccination in young and older adults. Aging 2023, 15: 9250-9274. PMID: 37367734, PMCID: PMC10564424, DOI: 10.18632/aging.204778.Peer-Reviewed Original ResearchConceptsB cellsActivated B cellsB cell receptorOlder adultsInfluenza vaccinationAge groupsPeripheral blood B cellsYoung adultsInactivated influenza vaccineB cell responsesSubstantial disease burdenBlood B cellsMemory B cellsInfluenza vaccination responsesStrong antibody responseAge-related changesInfluenza vaccineVaccination responseSeasonal influenzaAntibody responseHospital visitsDisease burdenSomatic hypermutation frequenciesVaccinationCell responses
2022
Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children
Xu Q, Milanez-Almeida P, Martins A, Radtke A, Hoehn K, Oguz C, Chen J, Liu C, Tang J, Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, Kardava L, Kirby M, Cheung F, Preite S, Duncker P, Kitakule M, Romero N, Preciado D, Gitman L, Koroleva G, Smith G, Shaffer A, McBain I, McGuire P, Pittaluga S, Germain R, Apps R, Schwartz D, Sadtler K, Moir S, Chertow D, Kleinstein S, Khurana S, Tsang J, Mudd P, Schwartzberg P, Manthiram K. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nature Immunology 2022, 24: 186-199. PMID: 36536106, PMCID: PMC10777159, DOI: 10.1038/s41590-022-01367-z.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAntibodies, ViralChildCOVID-19HumansPalatine TonsilPandemicsSARS-CoV-2ConceptsT cell receptorImmune responseGerminal centersPrevious SARS-CoV-2 infectionSARS-CoV-2 infectionB-cell receptor sequencingTissue-specific immunityCell receptor sequencingAdaptive immune responsesUpper respiratory tractMemory B cellsT cell clonotypesSite of infectionSARS-CoV-2Pharyngeal lymphoid tissuePeripheral bloodLymphocyte populationsLymphoid tissueRespiratory tractCell clonotypesAdaptive immunityB cellsCDR3 sequencesAdenoidsCell receptorTranscriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses
Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, Dunn P, Lee A, Levy O, Gottardo R, Sarwal M, Tsang J, Suárez-Fariñas M, Sékaly R, Kleinstein S, Pulendran B. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nature Immunology 2022, 23: 1788-1798. PMID: 36316475, PMCID: PMC9869360, DOI: 10.1038/s41590-022-01328-6.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, ViralAntibody FormationGene Expression ProfilingHumansImmunity, InnateVaccinationVaccinesConceptsAntibody responseDay 1Vaccine-induced antibodiesYellow fever vaccineHuman immune responseMechanisms of immunityB cell activationTranscriptional atlasFever vaccineDifferent vaccinesSystems vaccinologyImmune responseMost vaccinesDay 7Cell activationInnate immunityVaccineVaccinationImmunityCommon predictorsMolecular signaturesResponsePlasmablastsInterferonAntibodies
2020
A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM, Winkler ES, Fox JM, Kafai NM, Thackray LB, Hassan AO, Amanat F, Krammer F, Watson CT, Kleinstein SH, Fremont DH, Diamond MS, Ellebedy AH. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. The Journal Of Immunology 2020, 205: ji2000583. PMID: 32591393, PMCID: PMC7566074, DOI: 10.4049/jimmunol.2000583.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2AnimalsAntibodies, MonoclonalAntibodies, NeutralizingAntibodies, ViralBetacoronavirusChlorocebus aethiopsCoronavirus InfectionsCOVID-19Disease Models, AnimalEpitope MappingFemaleHEK293 CellsHumansImmunodominant EpitopesMiceMice, Inbred C57BLPandemicsPeptidyl-Dipeptidase APneumonia, ViralProtein Interaction Domains and MotifsSARS-CoV-2Spike Glycoprotein, CoronavirusTransfectionVero CellsConceptsSARS-CoV-2 infectionSARS-CoV-2Receptor-binding domainSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Angiotensin-converting enzyme 2Human angiotensin-converting enzyme 2Wild-type SARS-CoV-2Lung viral loadsSyndrome coronavirus 2Millions of infectionsTrimeric spike glycoproteinLicensed therapeuticsViral loadCoronavirus 2Systemic disseminationEffective antiviralsEnzyme 2Murine modelMurine mAbsEffective interventionsInfectionWeight lossSpike glycoproteinSeasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults
Avey S, Mohanty S, Chawla DG, Meng H, Bandaranayake T, Ueda I, Zapata HJ, Park K, Blevins TP, Tsang S, Belshe RB, Kaech SM, Shaw AC, Kleinstein SH. Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults. The Journal Of Immunology 2020, 204: 1661-1673. PMID: 32060136, PMCID: PMC7755271, DOI: 10.4049/jimmunol.1900922.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAgedAgingAntibodies, ViralCohort StudiesFemaleGene Expression ProfilingHemagglutination Inhibition TestsHumansImmunogenicity, VaccineInfluenza A virusInfluenza VaccinesInfluenza, HumanMaleNK Cell Lectin-Like Receptor Subfamily BOligonucleotide Array Sequence AnalysisSeasonsTranscriptomeVaccinationVaccines, InactivatedYoung AdultConceptsVaccine-induced Ab responsesOlder adultsInfluenza vaccinationDays postvaccinationInfluenza vaccineAb responsesMore effective influenza vaccinesImportant public health toolInactivated influenza vaccinationSeasonal influenza vaccineVaccine-induced immunityEffective influenza vaccinesMolecular signaturesEffects of immunosenescencePublic health toolImmune signaturesVaccination seasonVaccine responsesVaccine compositionSubset of individualsAge groupsHealth toolsSingle age groupAdultsPostvaccination
2015
Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing
Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JN, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integrative Biology 2015, 7: 1587-1597. PMID: 26481611, PMCID: PMC4754972, DOI: 10.1039/c5ib00169b.Peer-Reviewed Original ResearchConceptsHumoral responseNext-generation sequencingB cellsWest Nile virus infectionSevere neurological illnessMemory B cellsAntibody-secreting cellsCohort of subjectsWNV-specific antibodiesHuman B cellsMosquito-borne diseaseWest Nile virusAnamnestic responseAntibody responseAvailable treatmentsClinical severityAntibody isotypesNeurological illnessVaccine studiesVirus infectionGeneration sequencingInfectious diseasesPrevious exposureTherapeutic antibodiesAntibodies
2014
Immune Markers Associated with Host Susceptibility to Infection with West Nile Virus
Qian F, Thakar J, Yuan X, Nolan M, Murray KO, Lee WT, Wong SJ, Meng H, Fikrig E, Kleinstein SH, Montgomery RR. Immune Markers Associated with Host Susceptibility to Infection with West Nile Virus. Viral Immunology 2014, 27: 39-47. PMID: 24605787, PMCID: PMC3949440, DOI: 10.1089/vim.2013.0074.Peer-Reviewed Original ResearchConceptsWest Nile virusSevere infectionsImmune markersIL-4IL-4 levelsSerum cytokine levelsSerum IL-4Nile virusSignificant risk factorsImmune system statusPeripheral blood cellsSevere neurological diseaseCytokine levelsAntibody levelsImmune statusRisk factorsHealthy subjectsStratified cohortWNV infectionNeurological diseasesInfectionAltered expression levelsBlood cellsAltered gene expression patternsHost susceptibility